|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import torch |
|
import glob |
|
import math |
|
import os |
|
import re |
|
import gc |
|
import json |
|
import numpy as np |
|
from tqdm import tqdm |
|
from collections import OrderedDict |
|
from dataclasses import dataclass |
|
|
|
|
|
|
|
from deepspeed.utils import logger |
|
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, |
|
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, |
|
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) |
|
|
|
|
|
@dataclass |
|
class zero_model_state: |
|
buffers: dict() |
|
param_shapes: dict() |
|
shared_params: list |
|
ds_version: int |
|
frozen_param_shapes: dict() |
|
frozen_param_fragments: dict() |
|
|
|
|
|
debug = 0 |
|
|
|
|
|
device = torch.device('cpu') |
|
|
|
|
|
def atoi(text): |
|
return int(text) if text.isdigit() else text |
|
|
|
|
|
def natural_keys(text): |
|
''' |
|
alist.sort(key=natural_keys) sorts in human order |
|
http://nedbatchelder.com/blog/200712/human_sorting.html |
|
(See Toothy's implementation in the comments) |
|
''' |
|
return [atoi(c) for c in re.split(r'(\d+)', text)] |
|
|
|
|
|
def get_model_state_file(checkpoint_dir, zero_stage): |
|
if not os.path.isdir(checkpoint_dir): |
|
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") |
|
|
|
|
|
if zero_stage <= 2: |
|
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") |
|
elif zero_stage == 3: |
|
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") |
|
|
|
if not os.path.exists(file): |
|
raise FileNotFoundError(f"can't find model states file at '{file}'") |
|
|
|
return file |
|
|
|
|
|
def get_checkpoint_files(checkpoint_dir, glob_pattern): |
|
|
|
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) |
|
|
|
if len(ckpt_files) == 0: |
|
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") |
|
|
|
return ckpt_files |
|
|
|
|
|
def get_optim_files(checkpoint_dir): |
|
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") |
|
|
|
|
|
def get_model_state_files(checkpoint_dir): |
|
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") |
|
|
|
|
|
def parse_model_states(files): |
|
zero_model_states = [] |
|
for file in files: |
|
state_dict = torch.load(file, map_location=device, weights_only=False) |
|
|
|
if BUFFER_NAMES not in state_dict: |
|
raise ValueError(f"{file} is not a model state checkpoint") |
|
buffer_names = state_dict[BUFFER_NAMES] |
|
if debug: |
|
print("Found buffers:", buffer_names) |
|
|
|
|
|
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} |
|
param_shapes = state_dict[PARAM_SHAPES] |
|
|
|
|
|
param_names = [] |
|
for s in param_shapes: |
|
for name in s.keys(): |
|
param_names.append(name) |
|
|
|
|
|
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) |
|
if frozen_param_shapes is not None: |
|
if debug: |
|
print(f"Found frozen_param_shapes: {frozen_param_shapes}") |
|
param_names += list(frozen_param_shapes.keys()) |
|
|
|
|
|
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] |
|
|
|
ds_version = state_dict.get(DS_VERSION, None) |
|
|
|
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) |
|
|
|
z_model_state = zero_model_state(buffers=buffers, |
|
param_shapes=param_shapes, |
|
shared_params=shared_params, |
|
ds_version=ds_version, |
|
frozen_param_shapes=frozen_param_shapes, |
|
frozen_param_fragments=frozen_param_fragments) |
|
zero_model_states.append(z_model_state) |
|
|
|
return zero_model_states |
|
|
|
|
|
def parse_optim_states(files, ds_checkpoint_dir): |
|
total_files = len(files) |
|
state_dicts = [] |
|
for f in tqdm(files, desc='Loading checkpoint shards'): |
|
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) |
|
|
|
|
|
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) |
|
state_dicts.append(state_dict) |
|
|
|
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: |
|
raise ValueError(f"{files[0]} is not a zero checkpoint") |
|
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] |
|
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] |
|
|
|
|
|
|
|
|
|
|
|
if type(world_size) is list: |
|
world_size = max(world_size) |
|
|
|
if world_size != total_files: |
|
raise ValueError( |
|
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " |
|
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." |
|
) |
|
|
|
|
|
if zero_stage <= 2: |
|
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS |
|
elif zero_stage == 3: |
|
fp32_groups_key = FP32_FLAT_GROUPS |
|
else: |
|
raise ValueError(f"unknown zero stage {zero_stage}") |
|
|
|
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] |
|
return zero_stage, world_size, fp32_flat_groups |
|
|
|
|
|
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): |
|
""" |
|
Returns fp32 state_dict reconstructed from ds checkpoint |
|
|
|
Args: |
|
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) |
|
|
|
""" |
|
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") |
|
|
|
optim_files = get_optim_files(ds_checkpoint_dir) |
|
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) |
|
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") |
|
|
|
model_files = get_model_state_files(ds_checkpoint_dir) |
|
|
|
zero_model_states = parse_model_states(model_files) |
|
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') |
|
|
|
if zero_stage <= 2: |
|
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, |
|
exclude_frozen_parameters) |
|
elif zero_stage == 3: |
|
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, |
|
exclude_frozen_parameters) |
|
|
|
|
|
def _zero2_merge_frozen_params(state_dict, zero_model_states): |
|
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: |
|
return |
|
|
|
frozen_param_shapes = zero_model_states[0].frozen_param_shapes |
|
frozen_param_fragments = zero_model_states[0].frozen_param_fragments |
|
|
|
if debug: |
|
num_elem = sum(s.numel() for s in frozen_param_shapes.values()) |
|
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') |
|
|
|
wanted_params = len(frozen_param_shapes) |
|
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) |
|
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) |
|
print(f'Frozen params: Have {avail_numel} numels to process.') |
|
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') |
|
|
|
total_params = 0 |
|
total_numel = 0 |
|
for name, shape in frozen_param_shapes.items(): |
|
total_params += 1 |
|
unpartitioned_numel = shape.numel() |
|
total_numel += unpartitioned_numel |
|
|
|
state_dict[name] = frozen_param_fragments[name] |
|
|
|
if debug: |
|
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") |
|
|
|
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") |
|
|
|
|
|
def _has_callable(obj, fn): |
|
attr = getattr(obj, fn, None) |
|
return callable(attr) |
|
|
|
|
|
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): |
|
param_shapes = zero_model_states[0].param_shapes |
|
|
|
|
|
|
|
|
|
|
|
if debug: |
|
for i in range(world_size): |
|
for j in range(len(fp32_flat_groups[0])): |
|
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") |
|
|
|
|
|
num_param_groups = len(fp32_flat_groups[0]) |
|
merged_single_partition_of_fp32_groups = [] |
|
for i in range(num_param_groups): |
|
merged_partitions = [sd[i] for sd in fp32_flat_groups] |
|
full_single_fp32_vector = torch.cat(merged_partitions, 0) |
|
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) |
|
avail_numel = sum( |
|
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) |
|
|
|
if debug: |
|
wanted_params = sum([len(shapes) for shapes in param_shapes]) |
|
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) |
|
|
|
print(f"Have {avail_numel} numels to process.") |
|
print(f"Need {wanted_numel} numels in {wanted_params} params.") |
|
|
|
|
|
|
|
|
|
total_numel = 0 |
|
total_params = 0 |
|
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): |
|
offset = 0 |
|
avail_numel = full_single_fp32_vector.numel() |
|
for name, shape in shapes.items(): |
|
|
|
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) |
|
total_numel += unpartitioned_numel |
|
total_params += 1 |
|
|
|
if debug: |
|
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") |
|
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) |
|
offset += unpartitioned_numel |
|
|
|
|
|
|
|
|
|
|
|
align_to = 2 * world_size |
|
|
|
def zero2_align(x): |
|
return align_to * math.ceil(x / align_to) |
|
|
|
if debug: |
|
print(f"original offset={offset}, avail_numel={avail_numel}") |
|
|
|
offset = zero2_align(offset) |
|
avail_numel = zero2_align(avail_numel) |
|
|
|
if debug: |
|
print(f"aligned offset={offset}, avail_numel={avail_numel}") |
|
|
|
|
|
if offset != avail_numel: |
|
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") |
|
|
|
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") |
|
|
|
|
|
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, |
|
exclude_frozen_parameters): |
|
state_dict = OrderedDict() |
|
|
|
|
|
buffers = zero_model_states[0].buffers |
|
state_dict.update(buffers) |
|
if debug: |
|
print(f"added {len(buffers)} buffers") |
|
|
|
if not exclude_frozen_parameters: |
|
_zero2_merge_frozen_params(state_dict, zero_model_states) |
|
|
|
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) |
|
|
|
|
|
for pair in zero_model_states[0].shared_params: |
|
if pair[1] in state_dict: |
|
state_dict[pair[0]] = state_dict[pair[1]] |
|
|
|
return state_dict |
|
|
|
|
|
def zero3_partitioned_param_info(unpartitioned_numel, world_size): |
|
remainder = unpartitioned_numel % world_size |
|
padding_numel = (world_size - remainder) if remainder else 0 |
|
partitioned_numel = math.ceil(unpartitioned_numel / world_size) |
|
return partitioned_numel, padding_numel |
|
|
|
|
|
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): |
|
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: |
|
return |
|
|
|
if debug: |
|
for i in range(world_size): |
|
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) |
|
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') |
|
|
|
frozen_param_shapes = zero_model_states[0].frozen_param_shapes |
|
wanted_params = len(frozen_param_shapes) |
|
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) |
|
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size |
|
print(f'Frozen params: Have {avail_numel} numels to process.') |
|
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') |
|
|
|
total_params = 0 |
|
total_numel = 0 |
|
for name, shape in zero_model_states[0].frozen_param_shapes.items(): |
|
total_params += 1 |
|
unpartitioned_numel = shape.numel() |
|
total_numel += unpartitioned_numel |
|
|
|
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) |
|
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) |
|
|
|
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) |
|
|
|
if debug: |
|
print( |
|
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" |
|
) |
|
|
|
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") |
|
|
|
|
|
class GatheredTensor: |
|
""" |
|
A pseudo tensor that collects partitioned weights. |
|
It is more memory efficient when there are multiple groups. |
|
""" |
|
|
|
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): |
|
self.flat_groups = flat_groups |
|
self.flat_groups_offset = flat_groups_offset |
|
self.offset = offset |
|
self.partitioned_numel = partitioned_numel |
|
self.shape = shape |
|
self.dtype = self.flat_groups[0][0].dtype |
|
|
|
def contiguous(self): |
|
""" |
|
Merge partitioned weights from flat_groups into a single tensor. |
|
""" |
|
end_idx = self.offset + self.partitioned_numel |
|
world_size = len(self.flat_groups) |
|
pad_flat_param_chunks = [] |
|
|
|
for rank_i in range(world_size): |
|
|
|
flat_groups_at_rank_i = self.flat_groups[rank_i] |
|
start_group_id = None |
|
end_group_id = None |
|
for group_id in range(len(self.flat_groups_offset)): |
|
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: |
|
start_group_id = group_id |
|
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: |
|
end_group_id = group_id |
|
break |
|
|
|
for group_id in range(start_group_id, end_group_id + 1): |
|
flat_tensor = flat_groups_at_rank_i[group_id] |
|
start_offset = self.offset - self.flat_groups_offset[group_id] |
|
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] |
|
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) |
|
|
|
|
|
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) |
|
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() |
|
return param |
|
|
|
|
|
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): |
|
param_shapes = zero_model_states[0].param_shapes |
|
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size |
|
|
|
|
|
|
|
|
|
|
|
param_shapes = {k: v for d in param_shapes for k, v in d.items()} |
|
|
|
if debug: |
|
for i in range(world_size): |
|
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") |
|
|
|
wanted_params = len(param_shapes) |
|
wanted_numel = sum(shape.numel() for shape in param_shapes.values()) |
|
|
|
avail_numel = fp32_flat_groups[0].numel() * world_size |
|
print(f"Trainable params: Have {avail_numel} numels to process.") |
|
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") |
|
|
|
|
|
|
|
|
|
offset = 0 |
|
total_numel = 0 |
|
total_params = 0 |
|
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) |
|
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): |
|
unpartitioned_numel = shape.numel() |
|
total_numel += unpartitioned_numel |
|
total_params += 1 |
|
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) |
|
|
|
if debug: |
|
print( |
|
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" |
|
) |
|
|
|
|
|
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) |
|
state_dict[name] = tensor |
|
offset += partitioned_numel |
|
|
|
offset *= world_size |
|
|
|
|
|
if offset != avail_numel: |
|
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") |
|
|
|
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") |
|
|
|
|
|
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, |
|
exclude_frozen_parameters): |
|
state_dict = OrderedDict() |
|
|
|
|
|
buffers = zero_model_states[0].buffers |
|
state_dict.update(buffers) |
|
if debug: |
|
print(f"added {len(buffers)} buffers") |
|
|
|
if not exclude_frozen_parameters: |
|
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states) |
|
|
|
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) |
|
|
|
|
|
for pair in zero_model_states[0].shared_params: |
|
if pair[1] in state_dict: |
|
state_dict[pair[0]] = state_dict[pair[1]] |
|
|
|
return state_dict |
|
|
|
|
|
def to_torch_tensor(state_dict, return_empty_tensor=False): |
|
""" |
|
Convert state_dict of GatheredTensor to torch tensor |
|
""" |
|
torch_state_dict = {} |
|
converted_tensors = {} |
|
for name, tensor in state_dict.items(): |
|
tensor_id = id(tensor) |
|
if tensor_id in converted_tensors: |
|
shared_tensor = torch_state_dict[converted_tensors[tensor_id]] |
|
torch_state_dict[name] = shared_tensor |
|
else: |
|
converted_tensors[tensor_id] = name |
|
if return_empty_tensor: |
|
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) |
|
else: |
|
torch_state_dict[name] = tensor.contiguous() |
|
return torch_state_dict |
|
|
|
|
|
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, |
|
tag=None, |
|
exclude_frozen_parameters=False, |
|
lazy_mode=False): |
|
""" |
|
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with |
|
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example |
|
via a model hub. |
|
|
|
Args: |
|
- ``checkpoint_dir``: path to the desired checkpoint folder |
|
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` |
|
- ``exclude_frozen_parameters``: exclude frozen parameters |
|
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. |
|
Convert the pesduo tensor to torch tensor by ``.contiguous()`` |
|
|
|
Returns: |
|
- pytorch ``state_dict`` |
|
|
|
A typical usage might be :: |
|
|
|
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint |
|
# do the training and checkpoint saving |
|
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu |
|
model = model.cpu() # move to cpu |
|
model.load_state_dict(state_dict) |
|
# submit to model hub or save the model to share with others |
|
|
|
In this example the ``model`` will no longer be usable in the deepspeed context of the same |
|
application. i.e. you will need to re-initialize the deepspeed engine, since |
|
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. |
|
|
|
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. |
|
|
|
Note: the above usage may not work if your application doesn't have sufficient free CPU memory. |
|
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with |
|
the checkpoint. Or you can load state_dict in lazy mode :: |
|
|
|
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint |
|
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu |
|
for name, lazy_tensor in state_dict.item(): |
|
tensor = lazy_tensor.contiguous() # to cpu |
|
print(name, tensor) |
|
# del tensor to release memory if it no longer in use |
|
""" |
|
if tag is None: |
|
latest_path = os.path.join(checkpoint_dir, 'latest') |
|
if os.path.isfile(latest_path): |
|
with open(latest_path, 'r') as fd: |
|
tag = fd.read().strip() |
|
else: |
|
raise ValueError(f"Unable to find 'latest' file at {latest_path}") |
|
|
|
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) |
|
|
|
if not os.path.isdir(ds_checkpoint_dir): |
|
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") |
|
|
|
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) |
|
if lazy_mode: |
|
return state_dict |
|
else: |
|
return to_torch_tensor(state_dict) |
|
|
|
|
|
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, |
|
output_dir, |
|
max_shard_size="5GB", |
|
safe_serialization=False, |
|
tag=None, |
|
exclude_frozen_parameters=False): |
|
""" |
|
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be |
|
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. |
|
|
|
Args: |
|
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) |
|
- ``output_dir``: directory to the pytorch fp32 state_dict output files |
|
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB |
|
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). |
|
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` |
|
- ``exclude_frozen_parameters``: exclude frozen parameters |
|
""" |
|
|
|
|
|
if safe_serialization: |
|
try: |
|
from safetensors.torch import save_file |
|
except ImportError: |
|
print('If you want to use `safe_serialization`, please `pip install safetensors`') |
|
raise |
|
if max_shard_size is not None: |
|
try: |
|
from huggingface_hub import split_torch_state_dict_into_shards |
|
except ImportError: |
|
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') |
|
raise |
|
|
|
|
|
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, |
|
tag, |
|
exclude_frozen_parameters, |
|
lazy_mode=True) |
|
|
|
|
|
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" |
|
if max_shard_size is not None: |
|
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") |
|
|
|
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) |
|
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, |
|
filename_pattern=filename_pattern, |
|
max_shard_size=max_shard_size) |
|
else: |
|
from collections import namedtuple |
|
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) |
|
state_dict_split = StateDictSplit(is_sharded=False, |
|
filename_to_tensors={weights_name: list(state_dict.keys())}) |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
filename_to_tensors = state_dict_split.filename_to_tensors.items() |
|
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): |
|
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} |
|
shard_state_dict = to_torch_tensor(shard_state_dict) |
|
output_path = os.path.join(output_dir, shard_file) |
|
if safe_serialization: |
|
save_file(shard_state_dict, output_path, metadata={"format": "pt"}) |
|
else: |
|
torch.save(shard_state_dict, output_path) |
|
|
|
for tensor_name in list(shard_state_dict.keys()): |
|
del state_dict[tensor_name] |
|
del shard_state_dict[tensor_name] |
|
del shard_state_dict |
|
gc.collect() |
|
|
|
|
|
if state_dict_split.is_sharded: |
|
index = { |
|
"metadata": state_dict_split.metadata, |
|
"weight_map": state_dict_split.tensor_to_filename, |
|
} |
|
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" |
|
save_index_file = os.path.join(output_dir, save_index_file) |
|
with open(save_index_file, "w", encoding="utf-8") as f: |
|
content = json.dumps(index, indent=2, sort_keys=True) + "\n" |
|
f.write(content) |
|
|
|
|
|
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): |
|
""" |
|
1. Put the provided model to cpu |
|
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` |
|
3. Load it into the provided model |
|
|
|
Args: |
|
- ``model``: the model object to update |
|
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) |
|
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` |
|
|
|
Returns: |
|
- ``model`: modified model |
|
|
|
Make sure you have plenty of CPU memory available before you call this function. If you don't |
|
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it |
|
conveniently placed for you in the checkpoint folder. |
|
|
|
A typical usage might be :: |
|
|
|
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint |
|
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) |
|
# submit to model hub or save the model to share with others |
|
|
|
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context |
|
of the same application. i.e. you will need to re-initialize the deepspeed engine, since |
|
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. |
|
|
|
""" |
|
logger.info(f"Extracting fp32 weights") |
|
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) |
|
|
|
logger.info(f"Overwriting model with fp32 weights") |
|
model = model.cpu() |
|
model.load_state_dict(state_dict, strict=False) |
|
|
|
return model |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("checkpoint_dir", |
|
type=str, |
|
help="path to the desired checkpoint folder, e.g., path/checkpoint-12") |
|
parser.add_argument("output_dir", |
|
type=str, |
|
help="directory to the pytorch fp32 state_dict output files" |
|
"(e.g. path/checkpoint-12-output/)") |
|
parser.add_argument( |
|
"--max_shard_size", |
|
type=str, |
|
default="5GB", |
|
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" |
|
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" |
|
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" |
|
"without CPU OOM issues.") |
|
parser.add_argument( |
|
"--safe_serialization", |
|
default=False, |
|
action='store_true', |
|
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") |
|
parser.add_argument("-t", |
|
"--tag", |
|
type=str, |
|
default=None, |
|
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") |
|
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") |
|
parser.add_argument("-d", "--debug", action='store_true', help="enable debug") |
|
args = parser.parse_args() |
|
|
|
debug = args.debug |
|
|
|
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, |
|
args.output_dir, |
|
max_shard_size=args.max_shard_size, |
|
safe_serialization=args.safe_serialization, |
|
tag=args.tag, |
|
exclude_frozen_parameters=args.exclude_frozen_parameters) |
|
|