File size: 13,100 Bytes
99ed461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
weight_parallel_dim = {"llma.tok_embeddings.weight": 1, "llma.layers.0.attention.wq.weight": 0,
"llma.layers.0.attention.wq.bias": 0, "llma.layers.0.attention.wk.weight": 0,
"llma.layers.0.attention.wk.bias": 0, "llma.layers.0.attention.wv.weight": 0,
"llma.layers.0.attention.wv.bias": 0, "llma.layers.0.attention.wo.weight": 1,
"llma.layers.1.attention.wq.weight": 0, "llma.layers.1.attention.wq.bias": 0,
"llma.layers.1.attention.wk.weight": 0, "llma.layers.1.attention.wk.bias": 0,
"llma.layers.1.attention.wv.weight": 0, "llma.layers.1.attention.wv.bias": 0,
"llma.layers.1.attention.wo.weight": 1, "llma.layers.2.attention.wq.weight": 0,
"llma.layers.2.attention.wq.bias": 0, "llma.layers.2.attention.wk.weight": 0,
"llma.layers.2.attention.wk.bias": 0, "llma.layers.2.attention.wv.weight": 0,
"llma.layers.2.attention.wv.bias": 0, "llma.layers.2.attention.wo.weight": 1,
"llma.layers.3.attention.wq.weight": 0, "llma.layers.3.attention.wq.bias": 0,
"llma.layers.3.attention.wk.weight": 0, "llma.layers.3.attention.wk.bias": 0,
"llma.layers.3.attention.wv.weight": 0, "llma.layers.3.attention.wv.bias": 0,
"llma.layers.3.attention.wo.weight": 1, "llma.layers.4.attention.wq.weight": 0,
"llma.layers.4.attention.wq.bias": 0, "llma.layers.4.attention.wk.weight": 0,
"llma.layers.4.attention.wk.bias": 0, "llma.layers.4.attention.wv.weight": 0,
"llma.layers.4.attention.wv.bias": 0, "llma.layers.4.attention.wo.weight": 1,
"llma.layers.5.attention.wq.weight": 0, "llma.layers.5.attention.wq.bias": 0,
"llma.layers.5.attention.wk.weight": 0, "llma.layers.5.attention.wk.bias": 0,
"llma.layers.5.attention.wv.weight": 0, "llma.layers.5.attention.wv.bias": 0,
"llma.layers.5.attention.wo.weight": 1, "llma.layers.6.attention.wq.weight": 0,
"llma.layers.6.attention.wq.bias": 0, "llma.layers.6.attention.wk.weight": 0,
"llma.layers.6.attention.wk.bias": 0, "llma.layers.6.attention.wv.weight": 0,
"llma.layers.6.attention.wv.bias": 0, "llma.layers.6.attention.wo.weight": 1,
"llma.layers.7.attention.wq.weight": 0, "llma.layers.7.attention.wq.bias": 0,
"llma.layers.7.attention.wk.weight": 0, "llma.layers.7.attention.wk.bias": 0,
"llma.layers.7.attention.wv.weight": 0, "llma.layers.7.attention.wv.bias": 0,
"llma.layers.7.attention.wo.weight": 1, "llma.layers.8.attention.wq.weight": 0,
"llma.layers.8.attention.wq.bias": 0, "llma.layers.8.attention.wk.weight": 0,
"llma.layers.8.attention.wk.bias": 0, "llma.layers.8.attention.wv.weight": 0,
"llma.layers.8.attention.wv.bias": 0, "llma.layers.8.attention.wo.weight": 1,
"llma.layers.9.attention.wq.weight": 0, "llma.layers.9.attention.wq.bias": 0,
"llma.layers.9.attention.wk.weight": 0, "llma.layers.9.attention.wk.bias": 0,
"llma.layers.9.attention.wv.weight": 0, "llma.layers.9.attention.wv.bias": 0,
"llma.layers.9.attention.wo.weight": 1, "llma.layers.10.attention.wq.weight": 0,
"llma.layers.10.attention.wq.bias": 0, "llma.layers.10.attention.wk.weight": 0,
"llma.layers.10.attention.wk.bias": 0, "llma.layers.10.attention.wv.weight": 0,
"llma.layers.10.attention.wv.bias": 0, "llma.layers.10.attention.wo.weight": 1,
"llma.layers.11.attention.wq.weight": 0, "llma.layers.11.attention.wq.bias": 0,
"llma.layers.11.attention.wk.weight": 0, "llma.layers.11.attention.wk.bias": 0,
"llma.layers.11.attention.wv.weight": 0, "llma.layers.11.attention.wv.bias": 0,
"llma.layers.11.attention.wo.weight": 1, "llma.layers.12.attention.wq.weight": 0,
"llma.layers.12.attention.wq.bias": 0, "llma.layers.12.attention.wk.weight": 0,
"llma.layers.12.attention.wk.bias": 0, "llma.layers.12.attention.wv.weight": 0,
"llma.layers.12.attention.wv.bias": 0, "llma.layers.12.attention.wo.weight": 1,
"llma.layers.13.attention.wq.weight": 0, "llma.layers.13.attention.wq.bias": 0,
"llma.layers.13.attention.wk.weight": 0, "llma.layers.13.attention.wk.bias": 0,
"llma.layers.13.attention.wv.weight": 0, "llma.layers.13.attention.wv.bias": 0,
"llma.layers.13.attention.wo.weight": 1, "llma.layers.14.attention.wq.weight": 0,
"llma.layers.14.attention.wq.bias": 0, "llma.layers.14.attention.wk.weight": 0,
"llma.layers.14.attention.wk.bias": 0, "llma.layers.14.attention.wv.weight": 0,
"llma.layers.14.attention.wv.bias": 0, "llma.layers.14.attention.wo.weight": 1,
"llma.layers.15.attention.wq.weight": 0, "llma.layers.15.attention.wq.bias": 0,
"llma.layers.15.attention.wk.weight": 0, "llma.layers.15.attention.wk.bias": 0,
"llma.layers.15.attention.wv.weight": 0, "llma.layers.15.attention.wv.bias": 0,
"llma.layers.15.attention.wo.weight": 1, "llma.layers.16.attention.wq.weight": 0,
"llma.layers.16.attention.wq.bias": 0, "llma.layers.16.attention.wk.weight": 0,
"llma.layers.16.attention.wk.bias": 0, "llma.layers.16.attention.wv.weight": 0,
"llma.layers.16.attention.wv.bias": 0, "llma.layers.16.attention.wo.weight": 1,
"llma.layers.17.attention.wq.weight": 0, "llma.layers.17.attention.wq.bias": 0,
"llma.layers.17.attention.wk.weight": 0, "llma.layers.17.attention.wk.bias": 0,
"llma.layers.17.attention.wv.weight": 0, "llma.layers.17.attention.wv.bias": 0,
"llma.layers.17.attention.wo.weight": 1, "llma.layers.18.attention.wq.weight": 0,
"llma.layers.18.attention.wq.bias": 0, "llma.layers.18.attention.wk.weight": 0,
"llma.layers.18.attention.wk.bias": 0, "llma.layers.18.attention.wv.weight": 0,
"llma.layers.18.attention.wv.bias": 0, "llma.layers.18.attention.wo.weight": 1,
"llma.layers.19.attention.wq.weight": 0, "llma.layers.19.attention.wq.bias": 0,
"llma.layers.19.attention.wk.weight": 0, "llma.layers.19.attention.wk.bias": 0,
"llma.layers.19.attention.wv.weight": 0, "llma.layers.19.attention.wv.bias": 0,
"llma.layers.19.attention.wo.weight": 1, "llma.layers.20.attention.wq.weight": 0,
"llma.layers.20.attention.wq.bias": 0, "llma.layers.20.attention.wk.weight": 0,
"llma.layers.20.attention.wk.bias": 0, "llma.layers.20.attention.wv.weight": 0,
"llma.layers.20.attention.wv.bias": 0, "llma.layers.20.attention.wo.weight": 1,
"llma.layers.21.attention.wq.weight": 0, "llma.layers.21.attention.wq.bias": 0,
"llma.layers.21.attention.wk.weight": 0, "llma.layers.21.attention.wk.bias": 0,
"llma.layers.21.attention.wv.weight": 0, "llma.layers.21.attention.wv.bias": 0,
"llma.layers.21.attention.wo.weight": 1, "llma.layers.22.attention.wq.weight": 0,
"llma.layers.22.attention.wq.bias": 0, "llma.layers.22.attention.wk.weight": 0,
"llma.layers.22.attention.wk.bias": 0, "llma.layers.22.attention.wv.weight": 0,
"llma.layers.22.attention.wv.bias": 0, "llma.layers.22.attention.wo.weight": 1,
"llma.layers.23.attention.wq.weight": 0, "llma.layers.23.attention.wq.bias": 0,
"llma.layers.23.attention.wk.weight": 0, "llma.layers.23.attention.wk.bias": 0,
"llma.layers.23.attention.wv.weight": 0, "llma.layers.23.attention.wv.bias": 0,
"llma.layers.23.attention.wo.weight": 1, "llma.layers.24.attention.wq.weight": 0,
"llma.layers.24.attention.wq.bias": 0, "llma.layers.24.attention.wk.weight": 0,
"llma.layers.24.attention.wk.bias": 0, "llma.layers.24.attention.wv.weight": 0,
"llma.layers.24.attention.wv.bias": 0, "llma.layers.24.attention.wo.weight": 1,
"llma.layers.25.attention.wq.weight": 0, "llma.layers.25.attention.wq.bias": 0,
"llma.layers.25.attention.wk.weight": 0, "llma.layers.25.attention.wk.bias": 0,
"llma.layers.25.attention.wv.weight": 0, "llma.layers.25.attention.wv.bias": 0,
"llma.layers.25.attention.wo.weight": 1, "llma.layers.26.attention.wq.weight": 0,
"llma.layers.26.attention.wq.bias": 0, "llma.layers.26.attention.wk.weight": 0,
"llma.layers.26.attention.wk.bias": 0, "llma.layers.26.attention.wv.weight": 0,
"llma.layers.26.attention.wv.bias": 0, "llma.layers.26.attention.wo.weight": 1,
"llma.layers.27.attention.wq.weight": 0, "llma.layers.27.attention.wq.bias": 0,
"llma.layers.27.attention.wk.weight": 0, "llma.layers.27.attention.wk.bias": 0,
"llma.layers.27.attention.wv.weight": 0, "llma.layers.27.attention.wv.bias": 0,
"llma.layers.27.attention.wo.weight": 1, "llma.layers.28.attention.wq.weight": 0,
"llma.layers.28.attention.wq.bias": 0, "llma.layers.28.attention.wk.weight": 0,
"llma.layers.28.attention.wk.bias": 0, "llma.layers.28.attention.wv.weight": 0,
"llma.layers.28.attention.wv.bias": 0, "llma.layers.28.attention.wo.weight": 1,
"llma.layers.29.attention.wq.weight": 0, "llma.layers.29.attention.wq.bias": 0,
"llma.layers.29.attention.wk.weight": 0, "llma.layers.29.attention.wk.bias": 0,
"llma.layers.29.attention.wv.weight": 0, "llma.layers.29.attention.wv.bias": 0,
"llma.layers.29.attention.wo.weight": 1, "llma.layers.30.attention.wq.weight": 0,
"llma.layers.30.attention.wq.bias": 0, "llma.layers.30.attention.wk.weight": 0,
"llma.layers.30.attention.wk.bias": 0, "llma.layers.30.attention.wv.weight": 0,
"llma.layers.30.attention.wv.bias": 0, "llma.layers.30.attention.wo.weight": 1,
"llma.layers.31.attention.wq.weight": 0, "llma.layers.31.attention.wq.bias": 0,
"llma.layers.31.attention.wk.weight": 0, "llma.layers.31.attention.wk.bias": 0,
"llma.layers.31.attention.wv.weight": 0, "llma.layers.31.attention.wv.bias": 0,
"llma.layers.31.attention.wo.weight": 1, "llma.output.weight": 0, "llma.output.bias": 0}
import torch
from pathlib import Path
Path("./converted_sparse").mkdir(exist_ok=True)
ori = torch.load("consolidated.00.pth", map_location="cpu")
ori = {"llma." + key: val for key, val in ori.items()}
def func(rank=0):
shard_split_to = 8
split_ckpt = {}
for key, ori_param in ori.items():
if key in weight_parallel_dim:
split_ckpt[key] = torch.chunk(ori_param, shard_split_to, weight_parallel_dim[key])[
rank % shard_split_to].clone()
if rank == 0:
print(f"chunk {key}")
else:
if "experts.0." in key:
weight_all_experts = [ori[key.replace("experts.0.", f"experts.{i}.")] for i in range(8)]
if "w2" in key:
weight_all_experts = [torch.transpose(_, 0, 1) for _ in weight_all_experts]
weight_this_rank = [torch.chunk(_, 8, dim=0)[rank] for _ in weight_all_experts]
weight_this_rank = torch.cat(weight_this_rank, dim=0).clone()
key = key.replace("experts.0.", "").replace(".weight", "")
split_ckpt[key] = weight_this_rank
print("expert key")
elif "experts" in key:
continue
else:
split_ckpt[key] = ori_param
if rank == 0:
print(f"inherit {key}")
torch.save({"model": split_ckpt}, f"converted_sparse/consolidated.{rank:02d}-of-08.model.pth")
for r in range(8):
func(r) |