File size: 1,171 Bytes
20b4196 41fa2f0 20b4196 d3152bc 20b4196 41fa2f0 20b4196 479c191 20b4196 479c191 20b4196 479c191 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
base_model: Qwen/Qwen2-VL-72B-Instruct
library_name: transformers
license: apache-2.0
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: TVC-72B
results: []
pipeline_tag: image-text-to-text
---
## Model Summary
The TVC models are 72B parameter models based on Qwen2-VL-72B-Instruct model with a context window of 8K tokens.
- **Repository:** https://github.com/sun-hailong/TVC
- **Languages:** English, Chinese
- **Paper:** https://arxiv.org/abs/2503.13360
### Model Architecture
- **Architecture:** Qwen2-VL-72B-Instruct
- **Data:** a mixture of 300k long-chain reasoning data
- **Precision:** BFloat16
#### Hardware & Software
- **Hardware:** 64 * NVIDIA Tesla H20
- **Orchestration:** HuggingFace Trainer
- **Code:** Pytorch
### Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
## Citation
```
@article{sun2024mitigating,
title={Mitigating Visual Forgetting via Take-along Visual Conditioning for Multi-modal Long CoT Reasoning},
author={Sun, Hai-Long and Sun, Zhun and Peng, Houwen and Ye, Han-Jia},
journal={arXiv preprint arXiv:2503.13360},
year={2025}
}
``` |