babylm2024-git-txt / configuration_git.py
AlinaKl's picture
Upload 10 files
861d88f verified
raw
history blame
7.46 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
import transformers.models.git.configuration_git as configuration_git
GIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json",
}
class GitVisionConfig(configuration_git.GitVisionConfig, dict):
def __init__(self, *args, **kwargs):
configuration_git.GitVisionConfig.__init__(
self, *args, **kwargs)
dict.__init__(self, **self.__dict__)
def toJSON(self):
return json.dumps(
self,
default=lambda o: o.__dict__,
sort_keys=True,
indent=4)
class GitConfig(PretrainedConfig, dict):
r"""
This is the configuration class to store the configuration of a [`GitModel`]. It is used to instantiate a GIT model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the GIT
[microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`GitVisionConfig`].
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the GIT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GitModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
num_image_with_embedding (`int`, *optional*):
The number of temporal embeddings to add, in case the model is used for video captioning/VQA.
Examples:
```python
>>> from transformers import GitConfig, GitModel
>>> # Initializing a GIT microsoft/git-base style configuration
>>> configuration = GitConfig()
>>> # Initializing a model (with random weights) from the microsoft/git-base style configuration
>>> model = GitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "git"
def __init__(
self,
vision_config=None,
vocab_size=32778,
hidden_size=768,
num_hidden_layers=6,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=1024,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
use_cache=True,
tie_word_embeddings=True,
bos_token_id=101,
eos_token_id=102,
num_image_with_embedding=None,
**kwargs,
):
PretrainedConfig.__init__(
self,
bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
if vision_config is None:
vision_config = {}
self.vision_config = GitVisionConfig(**vision_config)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
self.num_image_with_embedding = num_image_with_embedding
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
dict.__init__(self, **self.__dict__)
def toJSON(self):
return json.dumps(
self,
default=lambda o: o.__dict__,
sort_keys=True,
indent=4)