File size: 11,978 Bytes
2ba13a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc9a9daa70>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc9a9dab00>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc9a9dab90>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc9a9dac20>",
        "_build": "<function ActorCriticPolicy._build at 0x7fcc9a9dacb0>",
        "forward": "<function ActorCriticPolicy.forward at 0x7fcc9a9dad40>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc9a9dadd0>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7fcc9a9dae60>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc9a9daef0>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc9a9daf80>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc9a9e1050>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7fcc9aa1cd20>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLEIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 16,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 16,
    "num_timesteps": 1212416,
    "_total_timesteps": 1200000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1652745639.4016604,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAQAAAAAAAAADgAAAAAAAAAKAAAAAAAAAAkAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAkAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAJAAAAAAAAAAkAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.010346666666666726,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUS0GMAXSUR0CVntTC+De1dX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CVnspxFRYSdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVnuPHktEodX2UKGgGRz/wAAAAAAAAaAdLL2gIR0CVntlE7W/bdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CVnvLamGdqdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CVnvErXlKcdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVnue2d/aydX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CVnup1zQu3dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CVnvGNaQmvdX2UKGgGRz/wAAAAAAAAaAdLPmgIR0CVnwdtl7MQdX2UKGgGRz/wAAAAAAAAaAdLJmgIR0CVnv4JeE7GdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CVnwLThHbzdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CVnxl8w5/9dX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CVny2GIsRQdX2UKGgGRz/wAAAAAAAAaAdLLGgIR0CVnynjyWiUdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CVn0H/cWTHdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0CVnz6Hj6vadX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CVnz0p3HJcdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CVnzqXnhbXdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CVn0sq8UVSdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CVn0W/8EV4dX2UKGgGRwAAAAAAAAAAaAdLEGgIR0CVn2EtNBWxdX2UKGgGRz/wAAAAAAAAaAdLNGgIR0CVn1+BpYcOdX2UKGgGRz/wAAAAAAAAaAdLKGgIR0CVn1UF0PpZdX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CVn1Q8OkLydX2UKGgGRz/wAAAAAAAAaAdLEmgIR0CVn2GrS3LFdX2UKGgGRz/wAAAAAAAAaAdLTmgIR0CVn1z+3pfQdX2UKGgGRz/wAAAAAAAAaAdLL2gIR0CVn2v38GcGdX2UKGgGRz/wAAAAAAAAaAdLImgIR0CVn2wUQCjldX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CVn2XIU8FIdX2UKGgGRz/wAAAAAAAAaAdLTGgIR0CVn3fcer+6dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVn3o6CDmKdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CVn4je9Ba+dX2UKGgGRwAAAAAAAAAAaAdLIGgIR0CVn4Nt65XmdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CVn4Z1V5rydX2UKGgGRz/wAAAAAAAAaAdLPWgIR0CVn5Zf2K2sdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CVn6HI6r/9dX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CVn5tq59VndX2UKGgGRz/wAAAAAAAAaAdLGWgIR0CVn6rf+CK8dX2UKGgGRz/wAAAAAAAAaAdLJmgIR0CVn8EMspXqdX2UKGgGRz/wAAAAAAAAaAdLQGgIR0CVn7jMFEApdX2UKGgGRz/wAAAAAAAAaAdLM2gIR0CVn8Phhpg1dX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CVn7f9xZMddX2UKGgGRz/wAAAAAAAAaAdLNmgIR0CVn8pz90ihdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CVn844p+c6dX2UKGgGRz/wAAAAAAAAaAdLKWgIR0CVn+vKEFnqdX2UKGgGRwAAAAAAAAAAaAdLSWgIR0CVn/LHdXT3dX2UKGgGRz/wAAAAAAAAaAdLM2gIR0CVn+++/QBxdX2UKGgGRz/wAAAAAAAAaAdLUmgIR0CVn/lkH2RJdX2UKGgGRwAAAAAAAAAAaAdLUGgIR0CVn/5vtMPCdX2UKGgGRz/wAAAAAAAAaAdLNGgIR0CVoA1BdD6WdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CVoAt+kP+XdX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CVoAd0JWvKdX2UKGgGRz/wAAAAAAAAaAdLTWgIR0CVoAfnOjZddX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoBOHnEEUdX2UKGgGRz/wAAAAAAAAaAdLNGgIR0CVoBdNWU8ndX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CVoCEal1r7dX2UKGgGRz/wAAAAAAAAaAdLImgIR0CVoBkq+ajOdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0CVoCXjENvwdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoCBVuJk5dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CVoDIczZYgdX2UKGgGRz/wAAAAAAAAaAdLNmgIR0CVoDTCLuQZdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CVoDRK6FufdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CVoDTLGJemdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CVoDM23rledX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CVoDmKZUkwdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CVoEuXNTtLdX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0CVoE60pmVadX2UKGgGRz/wAAAAAAAAaAdLRGgIR0CVoFkiUxEfdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CVoFV1fVqfdX2UKGgGRz/wAAAAAAAAaAdLEmgIR0CVoFyd4FA3dX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CVoHavRqoIdX2UKGgGRwAAAAAAAAAAaAdLJ2gIR0CVoG1SOzY3dX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CVoHxRVIZqdX2UKGgGRz/wAAAAAAAAaAdLF2gIR0CVoIT1TR6XdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoJCaZx7zdX2UKGgGRz/wAAAAAAAAaAdLWmgIR0CVoKgg5imVdX2UKGgGRwAAAAAAAAAAaAdLNGgIR0CVoLJlJ6IFdX2UKGgGRwAAAAAAAAAAaAdLFGgIR0CVoK4etCAudX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CVoKk7wKBvdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CVoKe4Cp3pdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CVoK8PFvQ4dX2UKGgGRwAAAAAAAAAAaAdLUGgIR0CVoLgGKQ7tdX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CVoMDTz/ZNdX2UKGgGRwAAAAAAAAAAaAdLN2gIR0CVoLs4DLbIdX2UKGgGRwAAAAAAAAAAaAdLY2gIR0CVoMAnlXA/dX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CVoMuoP07KdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CVoNMVDa4+dX2UKGgGRwAAAAAAAAAAaAdLGGgIR0CVoN0vGp++dX2UKGgGRz/wAAAAAAAAaAdLVGgIR0CVoNnNgSezdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CVoOolUp/gdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoO+MZP2xdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CVoO8TSLIgdX2UKGgGRwAAAAAAAAAAaAdLCWgIR0CVoQFqSHM2dX2UKGgGRwAAAAAAAAAAaAdLJmgIR0CVoQGuLaVVdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CVoQ/tpmEodX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CVoRUedTYNdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CVoRpuMuOCdX2UKGgGRwAAAAAAAAAAaAdLOGgIR0CVoSBMBZIQdX2UKGgGRz/wAAAAAAAAaAdLYmgIR0CVoR/kNnXedWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 496,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 4,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}