File size: 1,701 Bytes
92d87a1
ecb0669
92d87a1
 
e5ee3ec
 
 
 
 
92d87a1
 
 
 
 
 
 
 
 
 
ecb0669
e5ee3ec
ecb0669
 
 
 
 
92d87a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5ee3ec
 
ecb0669
 
 
92d87a1
 
 
 
 
 
ecb0669
92d87a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: sentence-compression
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sentence-compression

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3054
- Accuracy: 0.8802
- F1: 0.7439
- Precision: 0.7661
- Recall: 0.7229

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.317         | 1.0   | 200  | 0.3566          | 0.8513   | 0.6227 | 0.7998    | 0.5099 |
| 0.346         | 2.0   | 400  | 0.5853          | 0.7919   | 0.6724 | 0.5413    | 0.8875 |
| 0.2365        | 3.0   | 600  | 0.3054          | 0.8802   | 0.7439 | 0.7661    | 0.7229 |


### Framework versions

- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3