|
import logging |
|
from typing import Any, Dict, Optional, Set, Tuple, Union |
|
|
|
import peft |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import transformers |
|
import transformers.activations |
|
import transformers.modeling_outputs |
|
import transformers.models |
|
from transformers.models.whisper import modeling_whisper as whisper |
|
|
|
|
|
|
|
from .ultravox_config import LossConfig |
|
from .ultravox_config import LossFunction |
|
from .ultravox_config import UltravoxConfig |
|
|
|
|
|
class UltravoxModel(transformers.LlamaPreTrainedModel): |
|
""" |
|
The Ultravox model which consists of an audio encoder and a language model. |
|
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and |
|
projected to the language model's embedding space using a few linear layers. |
|
The text is embedded by the language model as usual and then the audio and text embeddings are merged together. |
|
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings. |
|
Parameters: |
|
config: Model configuration class with all the parameters of the model. |
|
""" |
|
|
|
config_class = UltravoxConfig |
|
config: UltravoxConfig |
|
|
|
_keys_to_ignore_on_load_missing = ["audio_tower.*", "language_model.*"] |
|
|
|
def __init__(self, config: UltravoxConfig): |
|
super().__init__(config) |
|
self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook) |
|
|
|
self.keep_params: Set[str] = set() |
|
self.vocab_size = config.vocab_size |
|
|
|
self.audio_tower = self._create_audio_tower(config) |
|
self.multi_modal_projector = self._create_multi_modal_projector(config) |
|
self.language_model = self._create_language_model(config) |
|
|
|
|
|
|
|
|
|
self._no_split_modules = (self.language_model._no_split_modules or []) + ( |
|
self.audio_tower._no_split_modules or [] |
|
) |
|
|
|
self.loss_config = LossConfig() |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
def set_loss_config(self, loss_config: LossConfig): |
|
self.loss_config = loss_config |
|
|
|
def _setup_cache( |
|
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None |
|
): |
|
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len) |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
return self.language_model._reorder_cache(past_key_values, beam_idx) |
|
|
|
def resize_token_embeddings( |
|
self, |
|
new_num_tokens: Optional[int] = None, |
|
pad_to_multiple_of: Optional[int] = None, |
|
) -> nn.Embedding: |
|
model_embeds = self.language_model.resize_token_embeddings( |
|
new_num_tokens, pad_to_multiple_of |
|
) |
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
def _compute_kl_loss( |
|
self, |
|
lm_output: transformers.modeling_outputs.CausalLMOutputWithPast, |
|
labels: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None, |
|
alt_input_ids: Optional[torch.Tensor] = None, |
|
alt_attention_mask: Optional[torch.Tensor] = None, |
|
alt_labels: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
): |
|
|
|
with torch.no_grad(): |
|
|
|
alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids) |
|
alt_lm_output = self.language_model.forward( |
|
inputs_embeds=alt_inputs_embeds, |
|
labels=alt_labels, |
|
attention_mask=alt_attention_mask, |
|
past_key_values=past_key_values, |
|
**kwargs, |
|
) |
|
|
|
kl_loss = F.kl_div( |
|
F.log_softmax( |
|
lm_output.logits[labels != -100] / self.loss_config.kl_temperature, |
|
dim=-1, |
|
), |
|
F.softmax( |
|
alt_lm_output.logits[alt_labels != -100] |
|
/ self.loss_config.kl_temperature, |
|
dim=-1, |
|
), |
|
reduction="batchmean", |
|
) |
|
return {"loss": kl_loss} |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
audio_values: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
audio_token_start_idx: Optional[torch.Tensor] = None, |
|
audio_len: Optional[torch.Tensor] = None, |
|
audio_token_len: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None, |
|
|
|
alt_input_ids: Optional[torch.Tensor] = None, |
|
alt_attention_mask: Optional[torch.Tensor] = None, |
|
alt_labels: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]: |
|
""" |
|
Forward pass for the Ultravox model. |
|
`input_ids` are the tokenized text input. They are embedded by the language model as usual. |
|
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and |
|
projected to the language model's embedding space using a few linear layers. |
|
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start |
|
of the audio embeddings in the merged embeddings. |
|
Args: |
|
input_ids: The tokenized text input. |
|
audio_values: The processed audio values. |
|
inputs_embeds: The embeddings for the input tokens. |
|
labels: The tokenized text labels. |
|
attention_mask: The attention mask for the input. |
|
position_ids: The position ids for the input. |
|
past_key_values: The past key value cache for the language model attention layers. |
|
**kwargs: Additional keyword arguments. Passed directly to the language model. |
|
""" |
|
if inputs_embeds is None: |
|
|
|
inputs_embeds = self.get_input_embeddings().forward(input_ids) |
|
|
|
if audio_values is not None: |
|
assert ( |
|
audio_token_start_idx is not None and audio_token_len is not None |
|
), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided." |
|
assert ( |
|
len(audio_token_start_idx) == len(audio_token_len) == len(audio_values) |
|
), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size." |
|
|
|
|
|
audio_tower_output = self.audio_tower.forward( |
|
audio_values.to(self.audio_tower.dtype), |
|
|
|
).last_hidden_state |
|
audio_tower_output = audio_tower_output.to(inputs_embeds.dtype) |
|
|
|
audio_embeds = self.multi_modal_projector.forward(audio_tower_output) |
|
|
|
|
|
for i, (audio, start, length) in enumerate( |
|
zip(audio_embeds, audio_token_start_idx, audio_token_len) |
|
): |
|
assert length <= audio.shape[0] |
|
inputs_embeds[i, start : start + length].copy_(audio[:length]) |
|
|
|
|
|
lm_output = self.language_model.forward( |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
**kwargs, |
|
) |
|
if self.training: |
|
if self.loss_config.loss_function == LossFunction.CrossEntropy: |
|
return lm_output |
|
elif self.loss_config.loss_function == LossFunction.KL_Divergence: |
|
return self._compute_kl_loss( |
|
lm_output=lm_output, |
|
labels=labels, |
|
past_key_values=past_key_values, |
|
alt_input_ids=alt_input_ids, |
|
alt_attention_mask=alt_attention_mask, |
|
alt_labels=alt_labels, |
|
**kwargs, |
|
) |
|
else: |
|
raise ValueError( |
|
f"Unsupported loss function: {self.loss_config.loss_function}" |
|
) |
|
else: |
|
return lm_output |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.Tensor, |
|
audio_values: Optional[torch.FloatTensor] = None, |
|
audio_token_start_idx: Optional[torch.Tensor] = None, |
|
audio_token_len: Optional[torch.Tensor] = None, |
|
audio_len: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
cache_position: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Dict[str, Any]: |
|
model_input = self.language_model.prepare_inputs_for_generation( |
|
input_ids=input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
|
|
|
|
prefill_start_idx = 0 if cache_position is None else cache_position[0] |
|
if ( |
|
audio_values is not None |
|
and audio_token_start_idx is not None |
|
and prefill_start_idx <= torch.max(audio_token_start_idx) |
|
): |
|
model_input["audio_values"] = audio_values |
|
model_input["audio_token_start_idx"] = ( |
|
audio_token_start_idx - prefill_start_idx |
|
) |
|
model_input["audio_token_len"] = audio_token_len |
|
model_input["audio_len"] = audio_len |
|
|
|
return model_input |
|
|
|
@classmethod |
|
def _create_multi_modal_projector( |
|
cls, config: UltravoxConfig |
|
) -> "UltravoxProjector": |
|
projector = UltravoxProjector(config) |
|
projector.to(config.torch_dtype) |
|
return projector |
|
|
|
@classmethod |
|
def _create_audio_tower( |
|
cls, config: UltravoxConfig |
|
) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]: |
|
if config.audio_model_id is not None: |
|
if "whisper" in config.audio_model_id is not None: |
|
audio_tower = ModifiedWhisperEncoder.from_pretrained( |
|
config.audio_model_id, torch_dtype=config.torch_dtype |
|
) |
|
else: |
|
audio_tower = transformers.AutoModel.from_pretrained( |
|
config.audio_model_id, torch_dtype=config.torch_dtype |
|
) |
|
else: |
|
if "whisper" in config.audio_config._name_or_path: |
|
audio_tower = ModifiedWhisperEncoder(config.audio_config) |
|
else: |
|
with transformers.modeling_utils.no_init_weights(): |
|
|
|
|
|
audio_tower = transformers.AutoModel.from_config( |
|
config.audio_config |
|
) |
|
|
|
if isinstance( |
|
audio_tower, |
|
(transformers.Wav2Vec2BertModel, transformers.WhisperModel), |
|
): |
|
|
|
|
|
|
|
audio_tower = audio_tower.encoder |
|
|
|
|
|
return audio_tower |
|
|
|
@classmethod |
|
def _create_language_model( |
|
cls, config: UltravoxConfig |
|
) -> transformers.LlamaForCausalLM: |
|
if config.text_model_id is not None: |
|
language_model = transformers.AutoModelForCausalLM.from_pretrained( |
|
config.text_model_id, |
|
attn_implementation=config._attn_implementation, |
|
torch_dtype=config.torch_dtype, |
|
) |
|
else: |
|
with transformers.modeling_utils.no_init_weights(): |
|
|
|
|
|
language_model = transformers.AutoModelForCausalLM.from_config( |
|
config.text_config, |
|
attn_implementation=config._attn_implementation, |
|
torch_dtype=config.torch_dtype, |
|
) |
|
|
|
language_model = apply_lora(language_model, config.text_model_lora_config) |
|
return language_model |
|
|
|
def merge_and_unload(self): |
|
if isinstance(self.language_model, peft.PeftModel): |
|
self.language_model = self.language_model.merge_and_unload() |
|
|
|
self.config.text_model_id = None |
|
self.keep_params.update( |
|
set( |
|
[ |
|
f"language_model.{name}" |
|
for name, _ in self.language_model.named_parameters() |
|
] |
|
) |
|
) |
|
|
|
if isinstance(self.audio_tower, peft.PeftModel): |
|
self.audio_tower = self.audio_tower.merge_and_unload() |
|
|
|
self.config.audio_model_id = None |
|
self.keep_params.update( |
|
set( |
|
[ |
|
f"audio_tower.{name}" |
|
for name, _ in self.audio_tower.named_parameters() |
|
] |
|
) |
|
) |
|
|
|
for param in ["text_model_lora_config", "audio_model_lora_config"]: |
|
if hasattr(self.config, param): |
|
delattr(self.config, param) |
|
|
|
def push_to_hub(self, *args, **kwargs): |
|
self.merge_and_unload() |
|
self.to(self.language_model.dtype) |
|
return super().push_to_hub(*args, **kwargs) |
|
|
|
def save_pretrained( |
|
self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs |
|
): |
|
if state_dict is None: |
|
state_dict = super().state_dict() |
|
|
|
named_params = dict(self.named_parameters()) |
|
|
|
state_dict = { |
|
k: v |
|
for k, v in state_dict.items() |
|
if k in self.keep_params |
|
or (k in named_params and named_params[k].requires_grad) |
|
} |
|
|
|
super().save_pretrained(*args, state_dict=state_dict, **kwargs) |
|
|
|
def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs): |
|
self.keep_params.update(set(state_dict.keys())) |
|
|
|
def print_trainable_parameters(self): |
|
""" |
|
Prints the number of trainable parameters in the model (reuses Peft model's method) |
|
""" |
|
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters |
|
|
|
trainable_params, all_param = count_params(self) |
|
|
|
logging.info( |
|
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}" |
|
f" || trainable%: {100 * trainable_params / all_param:.1f}%" |
|
) |
|
|
|
lm_trainable_params, lm_all_params = count_params(self.language_model) |
|
audio_trainable_params, audio_all_params = count_params(self.audio_tower) |
|
|
|
projector_trainable_params = ( |
|
trainable_params - lm_trainable_params - audio_trainable_params |
|
) |
|
projector_all_params = all_param - lm_all_params - audio_all_params |
|
|
|
logging.info( |
|
f"Trainable%: " |
|
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%" |
|
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%" |
|
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%" |
|
) |
|
|
|
|
|
def is_cache_empty( |
|
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] |
|
) -> bool: |
|
""" |
|
Check if the cache is empty. |
|
""" |
|
if past_key_values is None: |
|
return True |
|
if isinstance(past_key_values, tuple): |
|
return all(len(c) == 0 for c in past_key_values) |
|
return past_key_values.get_seq_length() == 0 |
|
|
|
|
|
def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module: |
|
""" |
|
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead. |
|
""" |
|
lora_config = peft.LoraConfig(**lora_config or {}) |
|
|
|
if lora_config.r == 0: |
|
|
|
for param in model.parameters(): |
|
param.requires_grad = False |
|
else: |
|
model = peft.get_peft_model(model, lora_config) |
|
|
|
return model |
|
|
|
|
|
class StackAudioFrames(nn.Module): |
|
""" |
|
Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`. |
|
The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames. |
|
NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor, |
|
we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings. |
|
In most cases this extra padding will get removed in the model's forward function so it has no effect. |
|
""" |
|
|
|
def __init__(self, stack_factor: int = 8): |
|
super().__init__() |
|
self.stack_factor = stack_factor |
|
|
|
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor: |
|
B, T, C = audio_embeds.shape |
|
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor |
|
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor)) |
|
B, T, C = audio_embeds.shape |
|
audio_embeds = audio_embeds.view( |
|
B, T // self.stack_factor, C * self.stack_factor |
|
) |
|
return audio_embeds |
|
|
|
|
|
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm): |
|
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6): |
|
super().__init__(hidden_size=hidden_size, eps=eps) |
|
self.weight.data.fill_(init) |
|
|
|
|
|
class SwiGLU(nn.Module): |
|
def forward(self, x): |
|
x, gate = x.chunk(2, dim=-1) |
|
return F.silu(gate) * x |
|
|
|
|
|
class UltravoxProjector(nn.Sequential): |
|
def __init__(self, config: UltravoxConfig): |
|
super().__init__() |
|
self.hidden_dim = config.hidden_size |
|
self._pad_and_stack = StackAudioFrames(config.stack_factor) |
|
dim = config.audio_config.hidden_size * config.stack_factor |
|
self.ln_pre = RMSNorm(dim, init=config.norm_init) |
|
self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False) |
|
dim = self.hidden_dim |
|
self.act = transformers.activations.get_activation(config.projector_act) |
|
dim = dim // 2 if config.projector_act == "swiglu" else dim |
|
self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False) |
|
self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init) |
|
|
|
def forward(self, audio_features: torch.Tensor) -> torch.Tensor: |
|
audio_features = self._pad_and_stack(audio_features) |
|
audio_features = self.ln_pre(audio_features) |
|
hidden_states = self.linear_1(audio_features) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
hidden_states = self.ln_post(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class ModifiedWhisperEncoder(whisper.WhisperEncoder, transformers.modeling_utils.ModuleUtilsMixin): |
|
""" |
|
Encoder portion of OpenAI's Whisper model. |
|
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes: |
|
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder |
|
2. allow less than 30 second of audio padding to be passed in: |
|
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal |
|
- embed_pos is now sliced to match the length of `inputs_embeds` |
|
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py |
|
""" |
|
|
|
base_model_prefix = "model.encoder" |
|
_no_split_modules = ["WhisperEncoderLayer"] |
|
|
|
def forward( |
|
self, |
|
input_features, |
|
audio_len=None, |
|
head_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
expected_seq_length = ( |
|
self.config.max_source_positions |
|
* self.conv1.stride[0] |
|
* self.conv2.stride[0] |
|
) |
|
if input_features.shape[-1] > expected_seq_length: |
|
raise ValueError( |
|
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}." |
|
) |
|
|
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
inputs_embeds = nn.functional.gelu(self.conv1(input_features)) |
|
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) |
|
|
|
inputs_embeds = inputs_embeds.permute(0, 2, 1) |
|
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)] |
|
|
|
hidden_states = inputs_embeds + embed_pos |
|
hidden_states = nn.functional.dropout( |
|
hidden_states, p=self.dropout, training=self.training |
|
) |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
attention_mask = None |
|
if audio_len != None: |
|
audio_feature_len = self._get_feat_extract_output_lengths(audio_len) |
|
batch_size = hidden_states.shape[0] |
|
max_seq_len = hidden_states.shape[1] |
|
attention_mask = ( |
|
torch.arange(max_seq_len, device=hidden_states.device)[None, :] |
|
.expand(batch_size, -1) |
|
.lt(audio_feature_len.view(batch_size, 1)) |
|
) |
|
attention_mask = self.get_extended_attention_mask( |
|
attention_mask, |
|
None, |
|
device=hidden_states.device, |
|
dtype=hidden_states.dtype, |
|
) |
|
|
|
|
|
if head_mask is not None: |
|
assert head_mask.size()[0] == ( |
|
len(self.layers) |
|
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." |
|
|
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
to_drop = False |
|
if self.training: |
|
dropout_probability = torch.rand([]) |
|
if dropout_probability < self.layerdrop: |
|
to_drop = True |
|
|
|
if to_drop: |
|
layer_outputs = (None, None) |
|
else: |
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
encoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
(head_mask[idx] if head_mask is not None else None), |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask=( |
|
head_mask[idx] if head_mask is not None else None |
|
), |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, encoder_states, all_attentions] |
|
if v is not None |
|
) |
|
return transformers.modeling_outputs.BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=encoder_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
|
|
UltravoxConfig.register_for_auto_class() |
|
UltravoxModel.register_for_auto_class() |
|
|
|
transformers.AutoConfig.register("ultravox", UltravoxConfig) |
|
transformers.AutoModel.register(UltravoxConfig, UltravoxModel) |
|
|
|
transformers.activations.ACT2FN["swiglu"] = SwiGLU |
|
|