File size: 4,916 Bytes
c32b21b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: other
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dalio-synthetic-io-1.3b
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dalio-synthetic-io-1.3b

This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5957
- Accuracy: 0.0624

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.6941        | 0.05  | 1    | 2.6543          | 0.0622   |
| 2.6914        | 0.11  | 2    | 2.6543          | 0.0622   |
| 2.6003        | 0.16  | 3    | 2.6016          | 0.0627   |
| 2.5603        | 0.21  | 4    | 2.5703          | 0.0627   |
| 2.6072        | 0.26  | 5    | 2.5508          | 0.0630   |
| 2.5444        | 0.32  | 6    | 2.5469          | 0.0628   |
| 2.4467        | 0.37  | 7    | 2.5508          | 0.0629   |
| 2.5452        | 0.42  | 8    | 2.5508          | 0.0629   |
| 2.6128        | 0.47  | 9    | 2.5449          | 0.0631   |
| 2.4568        | 0.53  | 10   | 2.5391          | 0.0627   |
| 2.5098        | 0.58  | 11   | 2.5352          | 0.0628   |
| 2.6047        | 0.63  | 12   | 2.5234          | 0.0631   |
| 2.5022        | 0.68  | 13   | 2.5156          | 0.0630   |
| 2.605         | 0.74  | 14   | 2.5078          | 0.0633   |
| 2.6055        | 0.79  | 15   | 2.5020          | 0.0634   |
| 2.5061        | 0.84  | 16   | 2.4961          | 0.0632   |
| 2.4348        | 0.89  | 17   | 2.4902          | 0.0631   |
| 2.6284        | 0.95  | 18   | 2.4883          | 0.0632   |
| 2.5574        | 1.0   | 19   | 2.4863          | 0.0631   |
| 2.0814        | 1.05  | 20   | 2.4844          | 0.0633   |
| 2.0636        | 1.11  | 21   | 2.4844          | 0.0635   |
| 1.9459        | 1.16  | 22   | 2.4844          | 0.0635   |
| 2.0527        | 1.21  | 23   | 2.4883          | 0.0634   |
| 1.8881        | 1.26  | 24   | 2.4961          | 0.0635   |
| 1.8668        | 1.32  | 25   | 2.5117          | 0.0636   |
| 2.0375        | 1.37  | 26   | 2.5293          | 0.0636   |
| 1.9402        | 1.42  | 27   | 2.5449          | 0.0632   |
| 1.6086        | 1.47  | 28   | 2.5586          | 0.0633   |
| 1.8185        | 1.53  | 29   | 2.5645          | 0.0632   |
| 1.7324        | 1.58  | 30   | 2.5605          | 0.0630   |
| 1.9285        | 1.63  | 31   | 2.5527          | 0.0628   |
| 1.8031        | 1.68  | 32   | 2.5449          | 0.0631   |
| 1.7321        | 1.74  | 33   | 2.5352          | 0.0630   |
| 1.7802        | 1.79  | 34   | 2.5254          | 0.0631   |
| 2.0637        | 1.84  | 35   | 2.5156          | 0.0632   |
| 1.8159        | 1.89  | 36   | 2.5078          | 0.0633   |
| 1.7142        | 1.95  | 37   | 2.5039          | 0.0634   |
| 1.8793        | 2.0   | 38   | 2.5             | 0.0634   |
| 1.6914        | 2.05  | 39   | 2.5020          | 0.0636   |
| 1.411         | 2.11  | 40   | 2.5039          | 0.0639   |
| 1.4182        | 2.16  | 41   | 2.5098          | 0.0639   |
| 1.6223        | 2.21  | 42   | 2.5176          | 0.0638   |
| 1.623         | 2.26  | 43   | 2.5273          | 0.0634   |
| 1.5748        | 2.32  | 44   | 2.5371          | 0.0634   |
| 1.7166        | 2.37  | 45   | 2.5469          | 0.0631   |
| 1.3432        | 2.42  | 46   | 2.5566          | 0.0630   |
| 1.5325        | 2.47  | 47   | 2.5645          | 0.0631   |
| 1.5076        | 2.53  | 48   | 2.5723          | 0.0629   |
| 1.6636        | 2.58  | 49   | 2.5781          | 0.0627   |
| 1.2897        | 2.63  | 50   | 2.5840          | 0.0627   |
| 1.4559        | 2.68  | 51   | 2.5879          | 0.0627   |
| 1.3904        | 2.74  | 52   | 2.5898          | 0.0627   |
| 1.4961        | 2.79  | 53   | 2.5918          | 0.0626   |
| 1.5276        | 2.84  | 54   | 2.5938          | 0.0625   |
| 1.3479        | 2.89  | 55   | 2.5957          | 0.0625   |
| 1.4094        | 2.95  | 56   | 2.5957          | 0.0624   |
| 1.5486        | 3.0   | 57   | 2.5957          | 0.0624   |


### Framework versions

- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1