File size: 2,943 Bytes
e933516
 
033b29f
e933516
 
 
 
 
 
 
 
 
 
 
033b29f
e933516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: AlekseyKorshuk/ai-detection-gutenberg-human-choosed-formatted-ai-sft-qwen-7b-dpo-3epochs
datasets: AlekseyKorshuk/ai-detection-gutenberg-human-choosed-formatted-ai-online-dpo-trl
library_name: transformers
model_name: ai-detection-gutenberg-human-choosed-formatted-ai-sft-qwen-7b-online-dpo-3epochs
tags:
- generated_from_trainer
- trl
- online-dpo
licence: license
---

# Model Card for ai-detection-gutenberg-human-choosed-formatted-ai-sft-qwen-7b-online-dpo-3epochs

This model is a fine-tuned version of [AlekseyKorshuk/ai-detection-gutenberg-human-choosed-formatted-ai-sft-qwen-7b-dpo-3epochs](https://huggingface.co/AlekseyKorshuk/ai-detection-gutenberg-human-choosed-formatted-ai-sft-qwen-7b-dpo-3epochs) on the [AlekseyKorshuk/ai-detection-gutenberg-human-choosed-formatted-ai-online-dpo-trl](https://huggingface.co/datasets/AlekseyKorshuk/ai-detection-gutenberg-human-choosed-formatted-ai-online-dpo-trl) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="AlekseyKorshuk/ai-detection-gutenberg-human-choosed-formatted-ai-sft-qwen-7b-online-dpo-3epochs", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/aleksey-korshuk/huggingface/runs/0mh6zkbo)

This model was trained with Online DPO, a method introduced in [Direct Language Model Alignment from Online AI Feedback](https://huggingface.co/papers/2402.04792).

### Framework versions

- TRL: 0.12.0.dev0
- Transformers: 4.46.0
- Pytorch: 2.4.1+cu124
- Datasets: 3.0.1
- Tokenizers: 0.20.1

## Citations

Cite Online DPO as:

```bibtex
@article{guo2024direct,
    title        = {{Direct Language Model Alignment from Online AI Feedback}},
    author       = {Shangmin Guo and Biao Zhang and Tianlin Liu and Tianqi Liu and Misha Khalman and Felipe Llinares and Alexandre Ram{'{e}} and Thomas Mesnard and Yao Zhao and Bilal Piot and Johan Ferret and Mathieu Blondel},
    year         = 2024,
    eprint       = {arXiv:2402.04792}
}
```

Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```