File size: 3,589 Bytes
8b08045 9a51d0f 8b08045 9a51d0f 8b08045 9a51d0f 8b08045 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
tags:
- generated_from_trainer
datasets:
- AlekseyKorshuk/dalio-all-io
metrics:
- accuracy
model-index:
- name: 1.3b-all-2-epoch-v1-after-book
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: AlekseyKorshuk/dalio-all-io
type: AlekseyKorshuk/dalio-all-io
metrics:
- name: Accuracy
type: accuracy
value: 0.06395348837209303
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 1.3b-all-2-epoch-v1-after-book
This model is a fine-tuned version of [/models/1.3b-dalio-principles-book](https://huggingface.co//models/1.3b-dalio-principles-book) on the AlekseyKorshuk/dalio-all-io dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9482
- Accuracy: 0.0640
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.17 | 0.07 | 1 | 2.0547 | 0.0621 |
| 2.1814 | 0.13 | 2 | 2.0547 | 0.0621 |
| 2.0963 | 0.2 | 3 | 2.0234 | 0.0625 |
| 2.1383 | 0.27 | 4 | 2.0195 | 0.0625 |
| 2.1625 | 0.33 | 5 | 2.0195 | 0.0625 |
| 2.1808 | 0.4 | 6 | 2.0156 | 0.0624 |
| 2.1587 | 0.47 | 7 | 2.0176 | 0.0626 |
| 2.0847 | 0.53 | 8 | 2.0137 | 0.0627 |
| 2.0336 | 0.6 | 9 | 2.0137 | 0.0627 |
| 2.1777 | 0.67 | 10 | 2.0059 | 0.0629 |
| 2.2034 | 0.73 | 11 | 2.0 | 0.0630 |
| 2.1665 | 0.8 | 12 | 1.9941 | 0.0628 |
| 2.0352 | 0.87 | 13 | 1.9883 | 0.0629 |
| 2.1263 | 0.93 | 14 | 1.9834 | 0.0628 |
| 2.1282 | 1.0 | 15 | 1.9785 | 0.0632 |
| 1.7159 | 1.07 | 16 | 1.9766 | 0.0633 |
| 1.8346 | 1.13 | 17 | 1.9775 | 0.0635 |
| 1.7183 | 1.2 | 18 | 1.9824 | 0.0634 |
| 1.6086 | 1.27 | 19 | 1.9883 | 0.0635 |
| 1.6497 | 1.33 | 20 | 1.9893 | 0.0634 |
| 1.6267 | 1.4 | 21 | 1.9854 | 0.0637 |
| 1.5962 | 1.47 | 22 | 1.9766 | 0.0637 |
| 1.5168 | 1.53 | 23 | 1.9697 | 0.0637 |
| 1.6213 | 1.6 | 24 | 1.9619 | 0.0637 |
| 1.4789 | 1.67 | 25 | 1.9580 | 0.0638 |
| 1.6796 | 1.73 | 26 | 1.9551 | 0.0638 |
| 1.5964 | 1.8 | 27 | 1.9531 | 0.0638 |
| 1.787 | 1.87 | 28 | 1.9512 | 0.0639 |
| 1.6536 | 1.93 | 29 | 1.9492 | 0.0640 |
| 1.7178 | 2.0 | 30 | 1.9482 | 0.0640 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|