AleMarroquin18 commited on
Commit
c4bd165
·
verified ·
1 Parent(s): e2506f4

End of training

Browse files
Files changed (2) hide show
  1. README.md +15 -14
  2. model.safetensors +1 -1
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.937991068905093
30
  - name: Recall
31
  type: recall
32
- value: 0.9717163436200738
33
  - name: F1
34
  type: f1
35
- value: 0.9545559134836631
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9784621223416512
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the biobert_json dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0853
49
- - Precision: 0.9380
50
- - Recall: 0.9717
51
- - F1: 0.9546
52
- - Accuracy: 0.9785
53
 
54
  ## Model description
55
 
@@ -74,16 +74,17 @@ The following hyperparameters were used during training:
74
  - seed: 42
75
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
  - lr_scheduler_type: linear
77
- - num_epochs: 4
78
 
79
  ### Training results
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | No log | 1.0 | 306 | 0.1343 | 0.9035 | 0.9289 | 0.9160 | 0.9646 |
84
- | 0.4365 | 2.0 | 612 | 0.0985 | 0.9254 | 0.9662 | 0.9453 | 0.9746 |
85
- | 0.4365 | 3.0 | 918 | 0.0833 | 0.9413 | 0.9684 | 0.9547 | 0.9788 |
86
- | 0.0949 | 4.0 | 1224 | 0.0853 | 0.9380 | 0.9717 | 0.9546 | 0.9785 |
 
87
 
88
 
89
  ### Framework versions
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.9438897083853398
30
  - name: Recall
31
  type: recall
32
+ value: 0.9742343502957194
33
  - name: F1
34
  type: f1
35
+ value: 0.9588220038613375
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9796142429212357
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the biobert_json dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.0878
49
+ - Precision: 0.9439
50
+ - Recall: 0.9742
51
+ - F1: 0.9588
52
+ - Accuracy: 0.9796
53
 
54
  ## Model description
55
 
 
74
  - seed: 42
75
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
  - lr_scheduler_type: linear
77
+ - num_epochs: 5
78
 
79
  ### Training results
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | No log | 1.0 | 306 | 0.0930 | 0.9292 | 0.9701 | 0.9492 | 0.9769 |
84
+ | 0.0689 | 2.0 | 612 | 0.0995 | 0.9337 | 0.9741 | 0.9535 | 0.9770 |
85
+ | 0.0689 | 3.0 | 918 | 0.0858 | 0.9466 | 0.9735 | 0.9599 | 0.9797 |
86
+ | 0.045 | 4.0 | 1224 | 0.0869 | 0.9450 | 0.9725 | 0.9586 | 0.9794 |
87
+ | 0.0414 | 5.0 | 1530 | 0.0878 | 0.9439 | 0.9742 | 0.9588 | 0.9796 |
88
 
89
 
90
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4b3e272be8aac167f2fc454887a5e7d987d1a0740653a852cfede5aa52643fc4
3
  size 1109928552
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33d67339a6f087cf803d631f58a4a7bc18a305f3ce9617df0ee169ba0497d9ec
3
  size 1109928552