predict-customer-churn / ChurnProject3.py
AlbieCofie's picture
Upload trained model
2880a2f
import gradio as gr
import pickle
import pandas as pd
import numpy as np
import joblib
from PIL import Image
num_imputer = joblib.load('numerical_imputer.joblib')
cat_imputer = joblib.load('categorical_imputer.joblib')
encoder = joblib.load('encoder.joblib')
scaler = joblib.load('scaler.joblib')
model = joblib.load('Final_model.joblib')
# Create a function that applies the ML pipeline and makes predictions
def predict(gender,SeniorCitizen,Partner,Dependents, tenure, PhoneService,MultipleLines,
InternetService,OnlineSecurity,OnlineBackup,DeviceProtection,TechSupport,StreamingTV,StreamingMovies,
Contract,PaperlessBilling,PaymentMethod,MonthlyCharges,TotalCharges):
# Create a dataframe with the input data
input_df = pd.DataFrame({
'gender': [gender],
'SeniorCitizen': [SeniorCitizen],
'Partner': [Partner],
'Dependents': [Dependents],
'tenure': [tenure],
'PhoneService': [PhoneService],
'MultipleLines': [MultipleLines],
'InternetService': [InternetService],
'OnlineSecurity': [OnlineSecurity],
'OnlineBackup': [OnlineBackup],
'DeviceProtection': [DeviceProtection],
'TechSupport': [TechSupport],
'StreamingTV': [StreamingTV],
'StreamingMovies': [StreamingMovies],
'Contract': [Contract],
'PaperlessBilling': [PaperlessBilling],
'PaymentMethod': [PaymentMethod],
'MonthlyCharges': [MonthlyCharges],
'TotalCharges': [TotalCharges]
})
# Selecting categorical and numerical columns separately
cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
# Apply the imputers on the input data
input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
input_df_imputed_num = num_imputer.transform(input_df[num_columns])
# Encode the categorical columns
input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(),
columns=encoder.get_feature_names_out(cat_columns))
# Scale the numerical columns
input_df_scaled = scaler.transform(input_df_imputed_num)
input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns)
#joining the cat encoded and num scaled
final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1)
final_df = final_df.reindex(columns=['SeniorCitizen','tenure','MonthlyCharges','TotalCharges',
'gender_Female','gender_Male','Partner_No','Partner_Yes','Dependents_No','Dependents_Yes','PhoneService_No',
'PhoneService_Yes','MultipleLines_No','MultipleLines_Yes','InternetService_DSL','InternetService_Fiber optic',
'InternetService_No','OnlineSecurity_No','OnlineSecurity_Yes','OnlineBackup_No','OnlineBackup_Yes','DeviceProtection_No',
'DeviceProtection_Yes','TechSupport_No','TechSupport_Yes','StreamingTV_No','StreamingTV_Yes','StreamingMovies_No',
'StreamingMovies_Yes','Contract_Month-to-month','Contract_One year','Contract_Two year','PaperlessBilling_No',
'PaperlessBilling_Yes','PaymentMethod_Bank transfer (automatic)','PaymentMethod_Credit card (automatic)','PaymentMethod_Electronic check',
'PaymentMethod_Mailed check'])
# Make predictions using the model
predictions = model.predict(final_df)
# Make predictions using the model
#predictions = model.predict(final_df)
# Convert the numpy array to an integer
#prediction_label = int(predictions.item())
prediction_label = "Beware!!! This customer is likely to Churn" if predictions.item() == "Yes" else "This customer is Not likely churn"
return prediction_label
#return predictions
input_interface=[]
with gr.Blocks(css=".gradio-container {background-color: powderblue}") as app:
img = gr.Image("C:/Users/user/Documents/AZUBI PROGRAM/CAREER ACELERATOR/LP4-buiding an app/Gradio/lp4_part2-1/telecom churn.png").style(height='13')
Title=gr.Label('CUSTOMER CHURN PREDICTION APP')
with gr.Row():
Title
with gr.Row():
img
#with gr.Blocks() as app:
# with gr.Blocks(css=".gradio-interface-container {background-color: powderblue}"):
#with gr.Row():
# gr.Label('Customer Churn Prediction Model')
with gr.Row():
gr.Markdown("This app predicts whether a customer will leave your company or not. Enter the details of the customer below to see the result")
#with gr.Row():
#gr.Label('This app predicts whether a customer will leave your company or not. Enter the details of the customer below to see the result')
with gr.Row():
with gr.Column(scale=3, min_width=600):
input_interface = [
gr.components.Radio(['male', 'female'], label='Select your gender'),
gr.components.Number(label="Are you a Seniorcitizen; No=0 and Yes=1"),
gr.components.Radio(['Yes', 'No'], label='Do you have Partner'),
gr.components.Dropdown(['No', 'Yes'], label='Do you have any Dependents? '),
gr.components.Number(label='Lenght of tenure (no. of months with Telco)'),
gr.components.Radio(['No', 'Yes'], label='Do you have PhoneService? '),
gr.components.Radio(['No', 'Yes'], label='Do you have MultipleLines'),
gr.components.Radio(['DSL', 'Fiber optic', 'No'], label='Do you have InternetService'),
gr.components.Radio(['No', 'Yes'], label='Do you have OnlineSecurity?'),
gr.components.Radio(['No', 'Yes'], label='Do you have OnlineBackup?'),
gr.components.Radio(['No', 'Yes'], label='Do you have DeviceProtection?'),
gr.components.Radio(['No', 'Yes'], label='Do you have TechSupport?'),
gr.components.Radio(['No', 'Yes'], label='Do you have StreamingTV?'),
gr.components.Radio(['No', 'Yes'], label='Do you have StreamingMovies?'),
gr.components.Dropdown(['Month-to-month', 'One year', 'Two year'], label='which Contract do you use?'),
gr.components.Radio(['Yes', 'No'], label='Do you prefer PaperlessBilling?'),
gr.components.Dropdown(['Electronic check', 'Mailed check', 'Bank transfer (automatic)',
'Credit card (automatic)'], label='Which PaymentMethod do you prefer?'),
gr.components.Number(label="Enter monthly charges"),
gr.components.Number(label="Enter total charges")
]
with gr.Row():
submit_btn = gr.Button('Submit')
predict_btn = gr.Button('Predict')
# Define the output interfaces
output_interface = gr.Label(label="churn")
predict_btn.click(fn=predict, inputs=input_interface, outputs=output_interface)
app.launch(share=True)