Akshay0706 commited on
Commit
0826093
·
1 Parent(s): a339e93

End of training

Browse files
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: Rice-Plant-20-Epochs-Model
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: train
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.9719626168224299
27
+ - name: F1
28
+ type: f1
29
+ value: 0.9719154614454629
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # Rice-Plant-20-Epochs-Model
36
+
37
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 0.1306
40
+ - Accuracy: 0.9720
41
+ - F1: 0.9719
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 2e-05
61
+ - train_batch_size: 16
62
+ - eval_batch_size: 16
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 20
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
72
+ | 1.0906 | 1.0 | 116 | 0.6826 | 0.8660 | 0.8676 |
73
+ | 0.3792 | 2.0 | 232 | 0.3327 | 0.9470 | 0.9474 |
74
+ | 0.1934 | 3.0 | 348 | 0.2876 | 0.9283 | 0.9285 |
75
+ | 0.1157 | 4.0 | 464 | 0.2187 | 0.9470 | 0.9470 |
76
+ | 0.0849 | 5.0 | 580 | 0.1614 | 0.9688 | 0.9689 |
77
+ | 0.0675 | 6.0 | 696 | 0.1326 | 0.9688 | 0.9688 |
78
+ | 0.0561 | 7.0 | 812 | 0.1227 | 0.9688 | 0.9688 |
79
+ | 0.0485 | 8.0 | 928 | 0.1306 | 0.9720 | 0.9719 |
80
+ | 0.0416 | 9.0 | 1044 | 0.1356 | 0.9720 | 0.9719 |
81
+ | 0.0369 | 10.0 | 1160 | 0.1184 | 0.9688 | 0.9688 |
82
+ | 0.0335 | 11.0 | 1276 | 0.1281 | 0.9720 | 0.9720 |
83
+ | 0.0308 | 12.0 | 1392 | 0.1129 | 0.9720 | 0.9719 |
84
+ | 0.0285 | 13.0 | 1508 | 0.1074 | 0.9720 | 0.9719 |
85
+ | 0.0267 | 14.0 | 1624 | 0.1061 | 0.9720 | 0.9719 |
86
+ | 0.0253 | 15.0 | 1740 | 0.1049 | 0.9720 | 0.9719 |
87
+ | 0.0241 | 16.0 | 1856 | 0.1048 | 0.9720 | 0.9719 |
88
+ | 0.0232 | 17.0 | 1972 | 0.1045 | 0.9720 | 0.9719 |
89
+ | 0.0225 | 18.0 | 2088 | 0.1036 | 0.9720 | 0.9719 |
90
+ | 0.0221 | 19.0 | 2204 | 0.1035 | 0.9720 | 0.9719 |
91
+ | 0.0219 | 20.0 | 2320 | 0.1036 | 0.9720 | 0.9719 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.35.0
97
+ - Pytorch 2.1.0+cu118
98
+ - Datasets 2.14.6
99
+ - Tokenizers 0.14.1
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 20.0,
3
+ "total_flos": 2.861106825675571e+18,
4
+ "train_loss": 0.11864709494442775,
5
+ "train_runtime": 3416.3962,
6
+ "train_samples": 1846,
7
+ "train_samples_per_second": 10.807,
8
+ "train_steps_per_second": 0.679
9
+ }
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224-in21k",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": 0,
13
+ "1": 1,
14
+ "2": 2,
15
+ "3": 3,
16
+ "4": 4,
17
+ "5": 5
18
+ },
19
+ "image_size": 224,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "0": 0,
24
+ "1": 1,
25
+ "2": 2,
26
+ "3": 3,
27
+ "4": 4,
28
+ "5": 5
29
+ },
30
+ "layer_norm_eps": 1e-12,
31
+ "model_type": "vit",
32
+ "num_attention_heads": 12,
33
+ "num_channels": 3,
34
+ "num_hidden_layers": 12,
35
+ "patch_size": 16,
36
+ "problem_type": "single_label_classification",
37
+ "qkv_bias": true,
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.35.0"
40
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8216f82a102db62670f57135ca2b77d0dcd1867fb25b9539cf1f1b8241808f87
3
+ size 343236280
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.5,
7
+ 0.5,
8
+ 0.5
9
+ ],
10
+ "image_processor_type": "ViTImageProcessor",
11
+ "image_std": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "resample": 2,
17
+ "rescale_factor": 0.00392156862745098,
18
+ "size": {
19
+ "height": 224,
20
+ "width": 224
21
+ }
22
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 20.0,
3
+ "total_flos": 2.861106825675571e+18,
4
+ "train_loss": 0.11864709494442775,
5
+ "train_runtime": 3416.3962,
6
+ "train_samples": 1846,
7
+ "train_samples_per_second": 10.807,
8
+ "train_steps_per_second": 0.679
9
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c49d6a1f4eb77052d99ca64aa6a91d078a5d20ed69adf3b2a1ab9bfa2a50b3a9
3
+ size 4536