Keras
English
nicholasKluge commited on
Commit
52b6734
·
verified ·
1 Parent(s): 134cf6d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -55
README.md CHANGED
@@ -8,26 +8,11 @@ metrics:
8
  - accuracy
9
  library_name: keras
10
  ---
11
- # Embedding-model-16
12
 
13
- ## Model Overview
14
 
15
- The Embedding-model-16 is a language model for sentiment analysis.
16
-
17
- ### Details
18
-
19
- - **Size:** 160,289 parameters
20
- - **Model type:** word embeddings
21
- - **Optimizer**: Adam
22
- - **Number of Epochs:** 20
23
- - **Embedding size:** 16
24
- - **Hardware:** Tesla V4
25
- - **Emissions:** Not measured
26
- - **Total Energy Consumption:** Not measured
27
-
28
- ### How to Use
29
-
30
- To run inference on this model, you can use the following code snippet:
31
 
32
  ```python
33
  import numpy as np
@@ -72,42 +57,5 @@ for i, word in enumerate(english_embedding_vocabulary):
72
 
73
  print("Embeddings Dimensions: ", np.array(list(words_embeddings.values())).shape)
74
  print("Vocabulary Size: ", len(words_embeddings.keys()))
75
- ```
76
- ## Intended Use
77
-
78
- This model was created for research purposes only. We do not recommend any application of this model outside this scope.
79
-
80
- ## Performance Metrics
81
-
82
- The model achieved an accuracy of 84% on validation data.
83
 
84
- ## Training Data
85
-
86
- The model was trained using a dataset that was put together by combining several datasets for sentiment classification available on [Kaggle](https://www.kaggle.com/):
87
-
88
- - The `IMDB 50K` [dataset](https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews?select=IMDB+Dataset.csv): _0K movie reviews for natural language processing or Text analytics._
89
- - The `Twitter US Airline Sentiment` [dataset](https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment): _originated from the [Crowdflower's Data for Everyone library](http://www.crowdflower.com/data-for-everyone)._
90
- - Our `google_play_apps_review` _dataset: built using the `google_play_scraper` in [this notebook](https://github.com/Nkluge-correa/teeny-tiny_castle/blob/master/ML%20Explainability/NLP%20Interpreter%20(en)/scrape(en).ipynb)._
91
- - The `EcoPreprocessed` [dataset](https://www.kaggle.com/datasets/pradeeshprabhakar/preprocessed-dataset-sentiment-analysis): _scrapped amazon product reviews_.
92
-
93
- ## Limitations
94
-
95
- We do not recommend using this model in real-world applications. It was solely developed for academic and educational purposes.
96
-
97
- ## Cite as
98
-
99
- ```latex
100
- @misc{teenytinycastle,
101
- doi = {10.5281/zenodo.7112065},
102
- url = {https://github.com/Nkluge-correa/teeny-tiny_castle},
103
- author = {Nicholas Kluge Corr{\^e}a},
104
- title = {Teeny-Tiny Castle},
105
- year = {2024},
106
- publisher = {GitHub},
107
- journal = {GitHub repository},
108
- }
109
  ```
110
-
111
- ## License
112
-
113
- This model is licensed under the Apache License, Version 2.0.
 
8
  - accuracy
9
  library_name: keras
10
  ---
11
+ # English Embedding v.16 (Teeny-Tiny Castle)
12
 
13
+ This model is part of a tutorial tied to the [Teeny-Tiny Castle](https://github.com/Nkluge-correa/TeenyTinyCastle), an open-source repository containing educational tools for AI Ethics and Safety research.
14
 
15
+ ## How to Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ```python
18
  import numpy as np
 
57
 
58
  print("Embeddings Dimensions: ", np.array(list(words_embeddings.values())).shape)
59
  print("Vocabulary Size: ", len(words_embeddings.keys()))
 
 
 
 
 
 
 
 
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  ```