Update README.md / Model Card Update
Browse files
README.md
CHANGED
@@ -6,13 +6,7 @@ pipeline_tag: text-to-image
|
|
6 |
tags:
|
7 |
- art
|
8 |
---
|
9 |
-
# Model Card for Model ID
|
10 |
|
11 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
-
|
13 |
-
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
14 |
-
|
15 |
-
## Model Details
|
16 |
|
17 |
### Model Description
|
18 |
|
@@ -79,82 +73,86 @@ If on a local A1111 set up, use the standard <Lora:[name-of-LoRA-Goes-here]:[1]>
|
|
79 |
|
80 |
### Interrogation Data
|
81 |
|
82 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
83 |
-
|
84 |
-
#### Preprocessing [optional]
|
85 |
-
|
86 |
-
[More Information Needed]
|
87 |
-
|
88 |
-
|
89 |
-
#### Training Hyperparameters
|
90 |
-
|
91 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
92 |
-
|
93 |
-
#### Speeds, Sizes, Times [optional]
|
94 |
-
|
95 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
96 |
-
|
97 |
-
[More Information Needed]
|
98 |
-
|
99 |
-
## Evaluation
|
100 |
-
|
101 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
102 |
-
|
103 |
-
### Testing Data, Factors & Metrics
|
104 |
-
|
105 |
-
#### Testing Data
|
106 |
-
|
107 |
-
<!-- This should link to a Dataset Card if possible. -->
|
108 |
-
|
109 |
-
[More Information Needed]
|
110 |
-
|
111 |
-
#### Factors
|
112 |
-
|
113 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
114 |
-
|
115 |
-
[More Information Needed]
|
116 |
-
|
117 |
-
#### Metrics
|
118 |
-
|
119 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
-
|
123 |
-
### Results
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
#### Summary
|
128 |
-
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
## Model Examination [optional]
|
132 |
-
|
133 |
-
<!-- Relevant interpretability work for the model goes here -->
|
134 |
-
|
135 |
-
[More Information Needed]
|
136 |
-
|
137 |
-
## Environmental Impact
|
138 |
-
|
139 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
140 |
-
|
141 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
142 |
-
|
143 |
-
- **Hardware Type:** [More Information Needed]
|
144 |
-
- **Hours used:** [More Information Needed]
|
145 |
-
- **Cloud Provider:** [More Information Needed]
|
146 |
-
- **Compute Region:** [More Information Needed]
|
147 |
-
- **Carbon Emitted:** [More Information Needed]
|
148 |
-
|
149 |
-
## Technical Specifications [optional]
|
150 |
-
|
151 |
-
### Model Architecture and Objective
|
152 |
-
|
153 |
-
[More Information Needed]
|
154 |
-
|
155 |
-
### Compute Infrastructure
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
|
159 |
#### Hardware
|
160 |
|
|
|
6 |
tags:
|
7 |
- art
|
8 |
---
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
### Model Description
|
12 |
|
|
|
73 |
|
74 |
### Interrogation Data
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
{
|
78 |
+
"ss_epoch": "10",
|
79 |
+
"ss_bucket_no_upscale": "False",
|
80 |
+
"ss_total_batch_size": "25",
|
81 |
+
"ss_num_batches_per_epoch": "69",
|
82 |
+
"ss_new_vae_hash": "63aeecb90ff7bc1c115395962d3e803571385b61938377bc7089b36e81e92e2e",
|
83 |
+
"ss_tag_frequency": "{\"meta_lat.json\": {}}",
|
84 |
+
"ss_min_snr_gamma": "3",
|
85 |
+
"ss_caption_dropout_every_n_epochs": "0",
|
86 |
+
"ss_sd_model_hash": "e577480d",
|
87 |
+
"ss_max_token_length": "225",
|
88 |
+
"ss_shuffle_caption": "False",
|
89 |
+
"ss_seed": "4479",
|
90 |
+
"ss_sd_model_name": "v6.safetensors",
|
91 |
+
"ss_reg_dataset_dirs": "{}",
|
92 |
+
"ss_flip_aug": "False",
|
93 |
+
"ss_lr_warmup_steps": "0",
|
94 |
+
"ss_resolution": "(1024, 1024)",
|
95 |
+
"ss_caption_dropout_rate": "0.0",
|
96 |
+
"ss_gradient_checkpointing": "True",
|
97 |
+
"ss_bucket_info": "{\"buckets\": {\"0\": {\"resolution\": [320, 1024], \"count\": 4}, \"1\": {\"resolution\": [384, 1024], \"count\": 2}, \"2\": {\"resolution\": [448, 1024], \"count\": 16}, \"3\": {\"resolution\": [512, 1024], \"count\": 32}, \"4\": {\"resolution\": [576, 1024], \"count\": 72}, \"5\": {\"resolution\": [640, 1024], \"count\": 126}, \"6\": {\"resolution\": [704, 1024], \"count\": 240}, \"7\": {\"resolution\": [768, 1024], \"count\": 182}, \"8\": {\"resolution\": [832, 1024], \"count\": 164}, \"9\": {\"resolution\": [896, 1024], \"count\": 76}, \"10\": {\"resolution\": [960, 1024], \"count\": 38}, \"11\": {\"resolution\": [1024, 320], \"count\": 2}, \"12\": {\"resolution\": [1024, 384], \"count\": 4}, \"13\": {\"resolution\": [1024, 448], \"count\": 2}, \"14\": {\"resolution\": [1024, 512], \"count\": 2}, \"15\": {\"resolution\": [1024, 576], \"count\": 26}, \"16\": {\"resolution\": [1024, 640], \"count\": 42}, \"17\": {\"resolution\": [1024, 704], \"count\": 84}, \"18\": {\"resolution\": [1024, 768], \"count\": 72}, \"19\": {\"resolution\": [1024, 832], \"count\": 52}, \"20\": {\"resolution\": [1024, 896], \"count\": 42}, \"21\": {\"resolution\": [1024, 960], \"count\": 34}, \"22\": {\"resolution\": [1024, 1024], \"count\": 32}}, \"mean_img_ar_error\": 0.0}",
|
98 |
+
"ss_full_fp16": "False",
|
99 |
+
"ss_scale_weight_norms": "None",
|
100 |
+
"ss_mixed_precision": "fp16",
|
101 |
+
"ss_max_grad_norm": "0",
|
102 |
+
"ss_enable_bucket": "True",
|
103 |
+
"ss_network_dropout": "None",
|
104 |
+
"ss_training_comment": "None",
|
105 |
+
"ss_training_finished_at": "1720056618.6869428",
|
106 |
+
"ss_multires_noise_iterations": "6",
|
107 |
+
"ss_random_crop": "False",
|
108 |
+
"ss_num_epochs": "10",
|
109 |
+
"ss_num_reg_images": "0",
|
110 |
+
"ss_network_dim": "32",
|
111 |
+
"ss_network_args": "{\"conv_dim\": \"8\", \"conv_alpha\": \"1\"}",
|
112 |
+
"ss_num_train_images": "1346",
|
113 |
+
"ss_gradient_accumulation_steps": "1",
|
114 |
+
"ss_face_crop_aug_range": "None",
|
115 |
+
"ss_lowram": "False",
|
116 |
+
"ss_vae_name": "sdxl_vae.safetensors",
|
117 |
+
"ss_clip_skip": "None",
|
118 |
+
"ss_max_bucket_reso": "None",
|
119 |
+
"sshs_model_hash": "86886e99d8a83793fe63cc21287344330858888423015fd998cc133c69a18862",
|
120 |
+
"ss_batch_size_per_device": "25",
|
121 |
+
"ss_v2": "False",
|
122 |
+
"ss_unet_lr": "None",
|
123 |
+
"ss_keep_tokens": "0",
|
124 |
+
"ss_color_aug": "False",
|
125 |
+
"ss_noise_offset": "None",
|
126 |
+
"ss_optimizer": "transformers.optimization.Adafactor(scale_parameter=False,relative_step=False,warmup_init=False)",
|
127 |
+
"ss_caption_tag_dropout_rate": "0.0",
|
128 |
+
"ss_base_model_version": "sdxl_base_v0-9",
|
129 |
+
"ss_zero_terminal_snr": "False",
|
130 |
+
"ss_max_train_steps": "690",
|
131 |
+
"ss_multires_noise_discount": "0.3",
|
132 |
+
"ss_learning_rate": "0.001",
|
133 |
+
"ss_adaptive_noise_scale": "None",
|
134 |
+
"ss_network_module": "networks.lora",
|
135 |
+
"ss_steps": "690",
|
136 |
+
"ss_vae_hash": "d636e597",
|
137 |
+
"ss_training_started_at": "1720053253.286365",
|
138 |
+
"ss_sd_scripts_commit_hash": "05811296f6dc987f67f194689e106a326017b9d4",
|
139 |
+
"ss_min_bucket_reso": "None",
|
140 |
+
"ss_output_name": "Lightsource | @0Lightsource | OLS[PonyXL]",
|
141 |
+
"ss_network_alpha": "32",
|
142 |
+
"ss_prior_loss_weight": "1.0",
|
143 |
+
"ss_lr_scheduler": "constant",
|
144 |
+
"ss_new_sd_model_hash": "67ab2fd8ec439a89b3fedb15cc65f54336af163c7eb5e4f2acc98f090a29b0b3",
|
145 |
+
"ss_text_encoder_lr": "None",
|
146 |
+
"ss_cache_latents": "False",
|
147 |
+
"sshs_legacy_hash": "76a48373",
|
148 |
+
"ss_dataset_dirs": "{\"meta_lat.json\": {\"n_repeats\": 2, \"img_count\": 673}}",
|
149 |
+
"ss_session_id": "2268693806"
|
150 |
+
}
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
[SDXL / PonyXL]
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
#### Hardware
|
158 |
|