End of training
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: roberta-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: roberta-base-classification
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# roberta-base-classification
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.8665
|
22 |
+
- Accuracy: {'accuracy': 0.7342799188640974}
|
23 |
+
- F1: {'f1': 0.7306952447422118}
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 32
|
44 |
+
- eval_batch_size: 32
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 20
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:|
|
54 |
+
| No log | 1.0 | 163 | 1.3840 | {'accuracy': 0.6024340770791075} | {'f1': 0.5642145589948825} |
|
55 |
+
| No log | 2.0 | 326 | 1.0832 | {'accuracy': 0.6511156186612576} | {'f1': 0.6334471187444455} |
|
56 |
+
| No log | 3.0 | 489 | 1.0334 | {'accuracy': 0.6977687626774848} | {'f1': 0.6897630671623124} |
|
57 |
+
| 1.0727 | 4.0 | 652 | 1.0970 | {'accuracy': 0.6876267748478702} | {'f1': 0.6871985325785717} |
|
58 |
+
| 1.0727 | 5.0 | 815 | 1.0281 | {'accuracy': 0.7342799188640974} | {'f1': 0.7301024691928815} |
|
59 |
+
| 1.0727 | 6.0 | 978 | 1.1807 | {'accuracy': 0.7018255578093306} | {'f1': 0.7067299604929954} |
|
60 |
+
| 0.2589 | 7.0 | 1141 | 1.2407 | {'accuracy': 0.7342799188640974} | {'f1': 0.7314658348123809} |
|
61 |
+
| 0.2589 | 8.0 | 1304 | 1.3048 | {'accuracy': 0.7403651115618661} | {'f1': 0.731151961567854} |
|
62 |
+
| 0.2589 | 9.0 | 1467 | 1.5180 | {'accuracy': 0.718052738336714} | {'f1': 0.7137872411382804} |
|
63 |
+
| 0.0808 | 10.0 | 1630 | 1.3989 | {'accuracy': 0.7606490872210954} | {'f1': 0.7557677624013166} |
|
64 |
+
| 0.0808 | 11.0 | 1793 | 1.5029 | {'accuracy': 0.7606490872210954} | {'f1': 0.7552919114782913} |
|
65 |
+
| 0.0808 | 12.0 | 1956 | 1.7512 | {'accuracy': 0.7241379310344828} | {'f1': 0.7171770258544846} |
|
66 |
+
| 0.0186 | 13.0 | 2119 | 1.6777 | {'accuracy': 0.7363083164300203} | {'f1': 0.7298768119446929} |
|
67 |
+
| 0.0186 | 14.0 | 2282 | 1.8128 | {'accuracy': 0.7363083164300203} | {'f1': 0.7328169574773649} |
|
68 |
+
| 0.0186 | 15.0 | 2445 | 1.7922 | {'accuracy': 0.7383367139959433} | {'f1': 0.7355194715827496} |
|
69 |
+
| 0.0039 | 16.0 | 2608 | 1.8762 | {'accuracy': 0.7281947261663286} | {'f1': 0.7221386387545444} |
|
70 |
+
| 0.0039 | 17.0 | 2771 | 1.8840 | {'accuracy': 0.7363083164300203} | {'f1': 0.7317008958800432} |
|
71 |
+
| 0.0039 | 18.0 | 2934 | 1.8368 | {'accuracy': 0.7383367139959433} | {'f1': 0.7340167563730315} |
|
72 |
+
| 0.0027 | 19.0 | 3097 | 1.8687 | {'accuracy': 0.7363083164300203} | {'f1': 0.7319705371219094} |
|
73 |
+
| 0.0027 | 20.0 | 3260 | 1.8665 | {'accuracy': 0.7342799188640974} | {'f1': 0.7306952447422118} |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.35.2
|
79 |
+
- Pytorch 2.1.0+cu121
|
80 |
+
- Datasets 2.16.1
|
81 |
+
- Tokenizers 0.15.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 725492596
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fed15d0042a0a22bce095aae9653c6f1d9b69f7e2c39e01bebafb65c055e29cd
|
3 |
size 725492596
|
runs/Jan28_15-05-03_325b39ea5ed8/events.out.tfevents.1706454304.325b39ea5ed8.5701.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b7681006116d1e88b5ee75fa165cc7e11dbb4485b9f1f14341c8099c7fc5b9b
|
3 |
+
size 12116
|