SCoder-APPS

This model is a fine-tuned version of bigcode/santacoder on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8114

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss
1.006 0.04 200 1.0234
0.9936 0.08 400 0.9176
0.9287 0.12 600 0.9170
0.8434 0.16 800 0.8872
0.8223 0.2 1000 0.8750
0.8129 0.24 1200 0.8720
0.8612 0.28 1400 0.8624
0.777 0.32 1600 0.8426
0.7444 0.36 1800 0.8453
0.6214 0.4 2000 0.8428
0.6856 0.44 2200 0.8365
0.6463 0.48 2400 0.8379
0.5872 0.52 2600 0.8226
0.6271 0.56 2800 0.8132
0.5772 0.6 3000 0.8237
0.568 0.64 3200 0.8097
0.5718 0.68 3400 0.8025
0.5407 0.72 3600 0.8222
0.4531 0.76 3800 0.8164
0.5571 0.8 4000 0.8209
0.4933 0.84 4200 0.8218
0.4749 0.88 4400 0.8176
0.4907 0.92 4600 0.8137
0.5014 0.96 4800 0.8118
0.4701 1.0 5000 0.8114

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
20
Safetensors
Model size
1.23B params
Tensor type
F32
·
U8
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for AdnanRiaz107/SCoder-APPS

Base model

bigcode/santacoder
Finetuned
(14)
this model