File size: 2,412 Bytes
47f7beb 4e90b16 47f7beb 4e90b16 47f7beb 4e90b16 47f7beb 4e90b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
base_model: microsoft/codebert-base
tags:
- generated_from_trainer
model-index:
- name: CodeBert-finetuned-the-stack-bash
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CodeBert-finetuned-the-stack-bash
This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.6895
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 8.1473 | 0.05 | 500 | 7.4270 |
| 6.9372 | 0.1 | 1000 | 6.9409 |
| 6.167 | 0.15 | 1500 | 6.6749 |
| 7.9745 | 0.2 | 2000 | 6.4053 |
| 7.2576 | 0.25 | 2500 | 6.2217 |
| 6.451 | 0.3 | 3000 | 6.0992 |
| 6.3218 | 0.35 | 3500 | 6.0231 |
| 6.3115 | 0.4 | 4000 | 6.0302 |
| 6.6343 | 0.45 | 4500 | 5.8745 |
| 6.1515 | 0.5 | 5000 | 5.8281 |
| 6.3992 | 0.55 | 5500 | 5.7614 |
| 6.8421 | 0.6 | 6000 | 5.8745 |
| 6.0542 | 0.65 | 6500 | 5.7452 |
| 5.3206 | 0.7 | 7000 | 5.7668 |
| 6.121 | 0.75 | 7500 | 5.6950 |
| 6.5956 | 0.8 | 8000 | 5.6926 |
| 5.8667 | 0.85 | 8500 | 5.6904 |
| 6.0287 | 0.9 | 9000 | 5.6803 |
| 5.8417 | 0.95 | 9500 | 5.6747 |
| 6.9719 | 1.0 | 10000 | 5.6895 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|