Update README.md
Browse files
README.md
CHANGED
@@ -71,19 +71,46 @@ For use cases involving other languages or highly specialized product categories
|
|
71 |
Use the code below to get started with the model for product classification:
|
72 |
|
73 |
```python
|
74 |
-
|
|
|
75 |
|
76 |
-
#
|
77 |
-
|
78 |
-
model = AutoModelForSequenceClassification.from_pretrained("Adnan-AI-Labs/DistilBERT-ProductClassifier")
|
79 |
|
80 |
-
#
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
# Example usage
|
84 |
-
product_description = "High-resolution digital camera with 20MP sensor."
|
85 |
-
result = classifier(product_description)
|
86 |
-
print(result)
|
87 |
```
|
88 |
|
89 |
# Training Details
|
|
|
71 |
Use the code below to get started with the model for product classification:
|
72 |
|
73 |
```python
|
74 |
+
import torch
|
75 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
76 |
|
77 |
+
# Define the model repository name
|
78 |
+
model_name = "Adnan-AI-Labs/DistilBERT-ProductClassifier"
|
|
|
79 |
|
80 |
+
# Load the tokenizer and model from the Hugging Face Hub
|
81 |
+
try:
|
82 |
+
# Load tokenizer
|
83 |
+
tokenizer = DistilBertTokenizer.from_pretrained(model_name, use_fast=True)
|
84 |
+
|
85 |
+
# Load model, forcing the download to avoid any cached version
|
86 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_name)
|
87 |
+
|
88 |
+
print("Model and tokenizer loaded successfully.")
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
print(f"An error occurred while loading the model: {e}")
|
92 |
+
exit()
|
93 |
+
|
94 |
+
# Test the model with some sample inputs
|
95 |
+
sample_texts = [
|
96 |
+
"estar s20 single uk sim free mobile phone red",
|
97 |
+
"cello c40227dvbt2 40 full hd black led tv",
|
98 |
+
]
|
99 |
+
|
100 |
+
# Prepare the inputs for the model
|
101 |
+
inputs = tokenizer(sample_texts, padding=True, truncation=True, return_tensors="pt")
|
102 |
+
|
103 |
+
# Make predictions
|
104 |
+
with torch.no_grad():
|
105 |
+
outputs = model(**inputs)
|
106 |
+
|
107 |
+
# Get the predicted class indices
|
108 |
+
predictions = torch.argmax(outputs.logits, dim=1)
|
109 |
+
|
110 |
+
# Print out the predictions
|
111 |
+
for text, pred in zip(sample_texts, predictions):
|
112 |
+
print(f"Text: {text} \nPredicted Class: {pred.item()}\n")
|
113 |
|
|
|
|
|
|
|
|
|
114 |
```
|
115 |
|
116 |
# Training Details
|