adnanaman commited on
Commit
3ad404e
1 Parent(s): aadc26d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -182
README.md CHANGED
@@ -1,219 +1,86 @@
1
  ---
2
- language: en
 
3
  tags:
4
- - text-classification
5
- - e-commerce
6
- - product-classification
7
- - distilbert
8
  license: apache-2.0
9
  datasets:
10
- - lakritidis/product-classification-and-categorization
11
  model-index:
12
- - name: DistilBERT-ProductClassifier
13
- results:
14
- - task:
15
- type: text-classification
16
- name: Product Category Classification
17
- dataset:
18
- name: Product Classification and Categorization
19
- type: lakritidis/product-classification-and-categorization
20
- metrics:
21
- - type: accuracy
22
- value: 96.17
23
- name: Accuracy
 
 
 
 
24
  ---
25
 
26
- # Model Card for Model ID
27
 
28
- <!-- Provide a quick summary of what the model is/does. -->
29
-
30
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
31
 
32
  ## Model Details
33
 
34
  ### Model Description
35
 
36
- <!-- Provide a longer summary of what this model is. -->
37
-
38
-
39
 
40
- - **Developed by:** [More Information Needed]
41
- - **Funded by [optional]:** [More Information Needed]
42
- - **Shared by [optional]:** [More Information Needed]
43
- - **Model type:** [More Information Needed]
44
- - **Language(s) (NLP):** [More Information Needed]
45
- - **License:** [More Information Needed]
46
- - **Finetuned from model [optional]:** [More Information Needed]
47
 
48
- ### Model Sources [optional]
49
 
50
- <!-- Provide the basic links for the model. -->
51
-
52
- - **Repository:** [More Information Needed]
53
- - **Paper [optional]:** [More Information Needed]
54
- - **Demo [optional]:** [More Information Needed]
55
 
56
  ## Uses
57
 
58
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
59
-
60
  ### Direct Use
61
 
62
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Downstream Use [optional]
67
-
68
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
69
-
70
- [More Information Needed]
71
 
72
  ### Out-of-Scope Use
73
 
74
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
75
-
76
- [More Information Needed]
77
 
78
  ## Bias, Risks, and Limitations
79
 
80
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Recommendations
85
 
86
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
87
-
88
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
89
 
90
  ## How to Get Started with the Model
91
 
92
- Use the code below to get started with the model.
93
-
94
- [More Information Needed]
95
-
96
- ## Training Details
97
-
98
- ### Training Data
99
-
100
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
101
-
102
- [More Information Needed]
103
-
104
- ### Training Procedure
105
-
106
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
107
-
108
- #### Preprocessing [optional]
109
-
110
- [More Information Needed]
111
-
112
-
113
- #### Training Hyperparameters
114
-
115
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
116
-
117
- #### Speeds, Sizes, Times [optional]
118
-
119
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
120
-
121
- [More Information Needed]
122
-
123
- ## Evaluation
124
-
125
- <!-- This section describes the evaluation protocols and provides the results. -->
126
-
127
- ### Testing Data, Factors & Metrics
128
-
129
- #### Testing Data
130
-
131
- <!-- This should link to a Dataset Card if possible. -->
132
-
133
- [More Information Needed]
134
-
135
- #### Factors
136
-
137
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
138
-
139
- [More Information Needed]
140
-
141
- #### Metrics
142
-
143
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
144
-
145
- [More Information Needed]
146
-
147
- ### Results
148
-
149
- [More Information Needed]
150
-
151
- #### Summary
152
-
153
-
154
-
155
- ## Model Examination [optional]
156
-
157
- <!-- Relevant interpretability work for the model goes here -->
158
-
159
- [More Information Needed]
160
-
161
- ## Environmental Impact
162
-
163
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
164
-
165
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
166
-
167
- - **Hardware Type:** [More Information Needed]
168
- - **Hours used:** [More Information Needed]
169
- - **Cloud Provider:** [More Information Needed]
170
- - **Compute Region:** [More Information Needed]
171
- - **Carbon Emitted:** [More Information Needed]
172
-
173
- ## Technical Specifications [optional]
174
-
175
- ### Model Architecture and Objective
176
-
177
- [More Information Needed]
178
-
179
- ### Compute Infrastructure
180
-
181
- [More Information Needed]
182
-
183
- #### Hardware
184
-
185
- [More Information Needed]
186
-
187
- #### Software
188
-
189
- [More Information Needed]
190
-
191
- ## Citation [optional]
192
-
193
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
194
-
195
- **BibTeX:**
196
-
197
- [More Information Needed]
198
-
199
- **APA:**
200
-
201
- [More Information Needed]
202
-
203
- ## Glossary [optional]
204
-
205
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
206
-
207
- [More Information Needed]
208
-
209
- ## More Information [optional]
210
-
211
- [More Information Needed]
212
 
213
- ## Model Card Authors [optional]
 
214
 
215
- [More Information Needed]
 
 
216
 
217
- ## Model Card Contact
 
218
 
219
- [More Information Needed]
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
  tags:
5
+ - text-classification
6
+ - e-commerce
7
+ - product-classification
8
+ - distilbert
9
  license: apache-2.0
10
  datasets:
11
+ - lakritidis/product-classification-and-categorization
12
  model-index:
13
+ - name: DistilBERT-ProductClassifier
14
+ results:
15
+ - task:
16
+ type: text-classification
17
+ name: Product Category Classification
18
+ dataset:
19
+ name: Product Classification and Categorization
20
+ type: lakritidis/product-classification-and-categorization
21
+ metrics:
22
+ - type: accuracy
23
+ value: 96.17
24
+ name: Accuracy
25
+ base_model:
26
+ - lxs1/DistilBertForSequenceClassification_6h_768dim
27
+ - distilbert/distilbert-base-uncased
28
+ pipeline_tag: text-classification
29
  ---
30
 
31
+ # Model Card for DistilBERT-ProductClassifier
32
 
33
+ This is a fine-tuned version of the DistilBERT model, specifically trained for product classification tasks within the e-commerce domain. The model distinguishes between various categories like "CPUs," "Digital Cameras," "Dishwashers," and more, making it useful for organizing and categorizing products in online retail platforms.
 
 
34
 
35
  ## Model Details
36
 
37
  ### Model Description
38
 
39
+ The DistilBERT-ProductClassifier model is trained on an e-commerce dataset to classify products into specific categories. It is optimized for efficient text classification tasks and is designed to work well with limited computational resources. This model leverages the compact DistilBERT architecture, making it suitable for real-time applications, including mobile and web environments.
 
 
40
 
41
+ - **Developed by:** Adnan AI Labs
42
+ - **Model type:** DistilBERT fine-tuned for text classification
43
+ - **Language:** English
44
+ - **License:** Apache 2.0
45
+ - **Finetuned from model:** [DistilBERT](https://huggingface.co/distilbert-base-uncased)
 
 
46
 
47
+ ## Model Sources
48
 
49
+ - **Repository:** [Adnan-AI-Labs/DistilBERT-ProductClassifier](https://huggingface.co/Adnan-AI-Labs/DistilBERT-ProductClassifier)
 
 
 
 
50
 
51
  ## Uses
52
 
 
 
53
  ### Direct Use
54
 
55
+ The model is intended for classifying products in text-based product listings for e-commerce platforms. Users can use this model to categorize products automatically, reducing the need for manual tagging and improving product discoverability.
 
 
 
 
 
 
 
 
56
 
57
  ### Out-of-Scope Use
58
 
59
+ This model should not be used for tasks unrelated to product classification or outside the e-commerce context. It is not designed for sentiment analysis, general text generation, or other unrelated NLP tasks.
 
 
60
 
61
  ## Bias, Risks, and Limitations
62
 
63
+ The model was trained on e-commerce data and may not perform well on products or categories outside the provided training scope. Additionally, some categories may have less representation in the training data, potentially affecting classification accuracy for those classes.
 
 
64
 
65
  ### Recommendations
66
 
67
+ For use cases involving other languages or highly specialized product categories not included in the training data, further fine-tuning may be necessary. Users should validate the model's output before using it for high-stakes decisions.
 
 
68
 
69
  ## How to Get Started with the Model
70
 
71
+ Use the code below to get started with the model for product classification:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
+ ```python
74
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
75
 
76
+ # Load the model and tokenizer
77
+ tokenizer = AutoTokenizer.from_pretrained("Adnan-AI-Labs/DistilBERT-ProductClassifier")
78
+ model = AutoModelForSequenceClassification.from_pretrained("Adnan-AI-Labs/DistilBERT-ProductClassifier")
79
 
80
+ # Create a pipeline for text classification
81
+ classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
82
 
83
+ # Example usage
84
+ product_description = "High-resolution digital camera with 20MP sensor."
85
+ result = classifier(product_description)
86
+ print(result)