AdmiralTaco
commited on
Commit
·
0ba35bd
1
Parent(s):
757dee4
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 277.71 +/- 13.90
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f87578517a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8757851830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f87578518c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8757851950>", "_build": "<function ActorCriticPolicy._build at 0x7f87578519e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8757851a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8757851b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8757851b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8757851c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8757851cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8757851d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f87578a2420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651765308.0547204, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDQx73VeiI+oHUDPl02uL4ngis9wmhnPQAAAAAAAAAAAEosPCmhErw969W952GovYU/OD3PSpQ+AACAPwAAgD+a+f+6pNZ2u8EBPL0xTjG+K5GyvMZlNb8AAIA/AACAPwCyUj3huIO6viPGu5XlpjwtGta65DCUvQAAgD8AAIA/wyGZPswauz6r4Zy+23qSvlNv6T06l0q+AAAAAAAAAAAAlAg9cA6/PyQoGD6NZOu9e5D9u5PP0jsAAAAAAAAAAOZCz717/oy6f/uSu+3UIDeIlp66vUGNtgAAAAAAAIA/LZsZviQkUTxGjoI9VEgnvNQu6r3ZjSI9AACAPwAAgD9z6Po9Era7P/AlCz8HtgS+clDMPS35tT4AAAAAAAAAADOoXz3HBzg+mpArPQ7yd74z4/49nmQevQAAAAAAAAAAVuYsPwF7g77Bn5m7A0DIO0jjub3OSra+AAAAAAAAgD/NTJa63AQbvFOWvzyltlY94ttKvIZRFT0AAIA/AACAPwCYujsU1JC6ApgdNiBsFjE5KKQ5grZBtQAAgD8AAIA/M3DzPfmxxT5GcRy+Pd9+vomcnzt0WqO9AAAAAAAAAACmH889X6eJPmYDDr7+4I2+ZTMSvEpkRL0AAAAAAAAAAHODaD7Idas+RaTTvuvWML44SUY88s4ovgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+5C3XH1scUCUhpRSlIwBbJRL+4wBdJRHQJtgpsXSBsh1fZQoaAZoCWgPQwjCa5c2XLFyQJSGlFKUaBVL0mgWR0CbYKtJnQIEdX2UKGgGaAloD0MIaOxLNh5TcUCUhpRSlGgVS+ZoFkdAm2D9wBHTZ3V9lChoBmgJaA9DCDXTvU7qwHJAlIaUUpRoFUvuaBZHQJthGnbZezF1fZQoaAZoCWgPQwjbp+Mxg7FxQJSGlFKUaBVLy2gWR0CbYWOgxrSFdX2UKGgGaAloD0MIJv+Tv3sNTECUhpRSlGgVS7RoFkdAm2KsV58jRnV9lChoBmgJaA9DCFfp7jqbeXBAlIaUUpRoFUvlaBZHQJtjNj0+TvB1fZQoaAZoCWgPQwgzwtuD0DdxQJSGlFKUaBVLz2gWR0CbY4y/9Hc2dX2UKGgGaAloD0MIdF5jlyhFcUCUhpRSlGgVS9doFkdAm2PPjn3cpXV9lChoBmgJaA9DCHqM8szLwnJAlIaUUpRoFUvWaBZHQJtkBPwd8zB1fZQoaAZoCWgPQwgnM95WOgVzQJSGlFKUaBVL3WgWR0CbZCUNayKOdX2UKGgGaAloD0MIVRSvsja2cECUhpRSlGgVS89oFkdAm2RtVinYQXV9lChoBmgJaA9DCHwqpz0lo3JAlIaUUpRoFUu/aBZHQJtlVW1c+q11fZQoaAZoCWgPQwgVViqoaB1xQJSGlFKUaBVLyWgWR0CbZaA5q/M4dX2UKGgGaAloD0MIGArYDgbhcUCUhpRSlGgVS9RoFkdAm2XTUiILxHV9lChoBmgJaA9DCMuGNZUFunJAlIaUUpRoFU0hAWgWR0CbZh0cwQDndX2UKGgGaAloD0MIl8eakQE+cUCUhpRSlGgVS8toFkdAm2aLwz+FUXV9lChoBmgJaA9DCE8IHXSJkW1AlIaUUpRoFUvfaBZHQJtmuLR8c+91fZQoaAZoCWgPQwh9IHnn0PtuQJSGlFKUaBVL1WgWR0CbaEVzIV/MdX2UKGgGaAloD0MIGTp2UAmpckCUhpRSlGgVS7loFkdAm2jMujASF3V9lChoBmgJaA9DCKJ8QQuJV3NAlIaUUpRoFUvRaBZHQJto2SeRPoF1fZQoaAZoCWgPQwgno8owLjFxQJSGlFKUaBVLzWgWR0CbaR/Z/Tb4dX2UKGgGaAloD0MIdTqQ9dQccUCUhpRSlGgVS+xoFkdAm2qtcW0qpnV9lChoBmgJaA9DCBO3CmJgBHFAlIaUUpRoFUvsaBZHQJtq1YA80UJ1fZQoaAZoCWgPQwhoeomxjLVwQJSGlFKUaBVNBAFoFkdAm2v8dDIBBHV9lChoBmgJaA9DCFVNEHXfTnFAlIaUUpRoFUvJaBZHQJtsNf6XSjR1fZQoaAZoCWgPQwg9mBQfX61wQJSGlFKUaBVL1mgWR0CbbEi1RceKdX2UKGgGaAloD0MIuqP/5RqIcUCUhpRSlGgVS+5oFkdAm2xyTQmeDnV9lChoBmgJaA9DCAOy17t/sHFAlIaUUpRoFUvQaBZHQJts9vNu+AV1fZQoaAZoCWgPQwjPo+L/zudxQJSGlFKUaBVL7GgWR0Cbbf9nbqQjdX2UKGgGaAloD0MIF2ahndNGcUCUhpRSlGgVTRkBaBZHQJtuGK2rn1Z1fZQoaAZoCWgPQwgAxciSOZFxQJSGlFKUaBVLyGgWR0Cbb2wGnn+ydX2UKGgGaAloD0MIYf91bprRcUCUhpRSlGgVTb0CaBZHQJtvdQm/nGN1fZQoaAZoCWgPQwimttRBXmxxQJSGlFKUaBVL52gWR0Cbb5EcsDnvdX2UKGgGaAloD0MIWi4bnbPzcECUhpRSlGgVS9xoFkdAm2+0tuk1uXV9lChoBmgJaA9DCJkrg2pD2XFAlIaUUpRoFUvqaBZHQJtwFwcYIjZ1fZQoaAZoCWgPQwgxlX7CGa1xQJSGlFKUaBVL22gWR0CbcYWP91lodX2UKGgGaAloD0MInx7bMmCbcECUhpRSlGgVS81oFkdAm3KBJqZc9nV9lChoBmgJaA9DCDc10HxO7HFAlIaUUpRoFU0CAWgWR0CbcqRfF72MdX2UKGgGaAloD0MIm8qisIv0bkCUhpRSlGgVS+VoFkdAm4Xzv3JxN3V9lChoBmgJaA9DCMTMPo/R7W9AlIaUUpRoFUvjaBZHQJuGGLn9vTB1fZQoaAZoCWgPQwhKe4MvTO5yQJSGlFKUaBVL9mgWR0Cbhtg6EJ0GdX2UKGgGaAloD0MImrFoOjtQcECUhpRSlGgVS9loFkdAm4d4gvDgqHV9lChoBmgJaA9DCHKKjuRydXJAlIaUUpRoFUvcaBZHQJuHpbOeJ551fZQoaAZoCWgPQwimfAiqRtdKQJSGlFKUaBVLsWgWR0CbiFzundftdX2UKGgGaAloD0MIg94bQ4D/cECUhpRSlGgVTTABaBZHQJuJD2f02+B1fZQoaAZoCWgPQwgaogp/hh1yQJSGlFKUaBVL5mgWR0CbiY2KEWZadX2UKGgGaAloD0MI+0DyzuG5cECUhpRSlGgVTQUBaBZHQJuKORnvlU91fZQoaAZoCWgPQwgOoUrN3kdzQJSGlFKUaBVNGQFoFkdAm4sHMhX8wnV9lChoBmgJaA9DCLWoT3KH7XFAlIaUUpRoFUvpaBZHQJuLsLqlgtx1fZQoaAZoCWgPQwg26Etvf4ByQJSGlFKUaBVLxWgWR0CbjCPtD2J0dX2UKGgGaAloD0MIZB75g0HgcUCUhpRSlGgVS+BoFkdAm4yJ1ie/YnV9lChoBmgJaA9DCI+rkV3pFHFAlIaUUpRoFUvkaBZHQJuMireZXuF1fZQoaAZoCWgPQwh0YDlChixjQJSGlFKUaBVN6ANoFkdAm4zBxDLKWHV9lChoBmgJaA9DCHZR9MBH0HFAlIaUUpRoFU0lAWgWR0CbjwhESdvsdX2UKGgGaAloD0MI8KXwoNk1cUCUhpRSlGgVTRIBaBZHQJuPcKCxu891fZQoaAZoCWgPQwjqXbwf97ByQJSGlFKUaBVL92gWR0Cbj3hFmWdFdX2UKGgGaAloD0MIcGHdeHcDbkCUhpRSlGgVS89oFkdAm4+w7gbZOHV9lChoBmgJaA9DCMECmDIw2nFAlIaUUpRoFUv4aBZHQJuQQWrOqvN1fZQoaAZoCWgPQwj4wmSqYIFxQJSGlFKUaBVL3GgWR0CbkI6vJRwZdX2UKGgGaAloD0MId6IkJBIycUCUhpRSlGgVS9JoFkdAm5Do55qubXV9lChoBmgJaA9DCFD8GHOXuXFAlIaUUpRoFU03AWgWR0CbkUMUAT7EdX2UKGgGaAloD0MIMzUJ3pDuI8CUhpRSlGgVTegDaBZHQJuRdTl1bJR1fZQoaAZoCWgPQwjVl6WdWrVxQJSGlFKUaBVL9WgWR0CbkoIOYplSdX2UKGgGaAloD0MIqfbpeAxzckCUhpRSlGgVS9FoFkdAm5K9DlYEGXV9lChoBmgJaA9DCEUuOIP/BHFAlIaUUpRoFUvsaBZHQJuTKRuCPIZ1fZQoaAZoCWgPQwi9jc2OVBpwQJSGlFKUaBVL4mgWR0Cbk1wN9YwJdX2UKGgGaAloD0MI1jkGZK/PbkCUhpRSlGgVTRUBaBZHQJuT0zch1T11fZQoaAZoCWgPQwimfAiqRo9xQJSGlFKUaBVNAAFoFkdAm5PqIJqqO3V9lChoBmgJaA9DCIttUtHYem9AlIaUUpRoFUvpaBZHQJuV3lwLmZF1fZQoaAZoCWgPQwjVsN8Tq3ZzQJSGlFKUaBVL9WgWR0CblfwbVBlddX2UKGgGaAloD0MIyH2rdeIUc0CUhpRSlGgVTRcBaBZHQJuWmqBEroZ1fZQoaAZoCWgPQwg+WwcHO0hzQJSGlFKUaBVL3GgWR0CblqH58BuGdX2UKGgGaAloD0MIqOSc2MPPcUCUhpRSlGgVTQ0BaBZHQJuWr/4qPOp1fZQoaAZoCWgPQwht/l91pFhyQJSGlFKUaBVL+GgWR0CbltEmICU5dX2UKGgGaAloD0MICVOUSyPNckCUhpRSlGgVTQEBaBZHQJuXTM4cWCV1fZQoaAZoCWgPQwgH6/8cpoxwQJSGlFKUaBVNBwFoFkdAm5gybtqpLnV9lChoBmgJaA9DCGssYW2MhHFAlIaUUpRoFUvnaBZHQJuYc4ACGN91fZQoaAZoCWgPQwinr+drFvduQJSGlFKUaBVL4GgWR0CbmIDCxeLOdX2UKGgGaAloD0MIDjFe86omc0CUhpRSlGgVS9poFkdAm5jEC3gDR3V9lChoBmgJaA9DCJQXmYDft3JAlIaUUpRoFUvVaBZHQJuY180DU3J1fZQoaAZoCWgPQwi/Khcq/yZuQJSGlFKUaBVL1mgWR0CbmXk/KQq7dX2UKGgGaAloD0MIzO80mfETcECUhpRSlGgVS99oFkdAm5mY+wC8vnV9lChoBmgJaA9DCEPLun+sB3BAlIaUUpRoFUvUaBZHQJublqZc9nt1fZQoaAZoCWgPQwh3o4/5wIlyQJSGlFKUaBVL0mgWR0CbnC+wkgOjdX2UKGgGaAloD0MIXDy858CdckCUhpRSlGgVS+xoFkdAm5wvepGWlnV9lChoBmgJaA9DCJyIfm39P3JAlIaUUpRoFUvvaBZHQJudFj2Bas91fZQoaAZoCWgPQwjOwwlMZ7twQJSGlFKUaBVL8mgWR0CbnR7tiQT3dX2UKGgGaAloD0MI8nwG1JuGcECUhpRSlGgVS8doFkdAm52gQpWmxnV9lChoBmgJaA9DCGIs0y9RzXJAlIaUUpRoFUvsaBZHQJudrh3qzJJ1fZQoaAZoCWgPQwi8PQgBecNyQJSGlFKUaBVNEAFoFkdAm54fJFLFoHV9lChoBmgJaA9DCL9J06Do5W9AlIaUUpRoFUvhaBZHQJuejwx33Yd1fZQoaAZoCWgPQwgu5ueGplZiQJSGlFKUaBVN6ANoFkdAm574OpbUw3V9lChoBmgJaA9DCDKrd7id1HFAlIaUUpRoFUvhaBZHQJue/38GcF11fZQoaAZoCWgPQwjCNXf0/01wQJSGlFKUaBVL6WgWR0CbnyFx4ptrdX2UKGgGaAloD0MIj6m7sgujcUCUhpRSlGgVS/5oFkdAm59ioCMglnV9lChoBmgJaA9DCHzUX68wrXJAlIaUUpRoFUvvaBZHQJuf6h7E5yV1fZQoaAZoCWgPQwjYutQI/VlxQJSGlFKUaBVL7WgWR0Cbn/xh2GIsdX2UKGgGaAloD0MIYkuPpvpAb0CUhpRSlGgVS9doFkdAm6HptSAH3XV9lChoBmgJaA9DCJXx7zOufnFAlIaUUpRoFUvZaBZHQJuh+mMwUQF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:354de02bbefbb1718852292492be15de4add610b28e66630295b523869d93a63
|
3 |
+
size 144010
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f87578517a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8757851830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f87578518c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8757851950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f87578519e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8757851a70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8757851b00>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8757851b90>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8757851c20>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8757851cb0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8757851d40>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f87578a2420>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651765308.0547204,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDQx73VeiI+oHUDPl02uL4ngis9wmhnPQAAAAAAAAAAAEosPCmhErw969W952GovYU/OD3PSpQ+AACAPwAAgD+a+f+6pNZ2u8EBPL0xTjG+K5GyvMZlNb8AAIA/AACAPwCyUj3huIO6viPGu5XlpjwtGta65DCUvQAAgD8AAIA/wyGZPswauz6r4Zy+23qSvlNv6T06l0q+AAAAAAAAAAAAlAg9cA6/PyQoGD6NZOu9e5D9u5PP0jsAAAAAAAAAAOZCz717/oy6f/uSu+3UIDeIlp66vUGNtgAAAAAAAIA/LZsZviQkUTxGjoI9VEgnvNQu6r3ZjSI9AACAPwAAgD9z6Po9Era7P/AlCz8HtgS+clDMPS35tT4AAAAAAAAAADOoXz3HBzg+mpArPQ7yd74z4/49nmQevQAAAAAAAAAAVuYsPwF7g77Bn5m7A0DIO0jjub3OSra+AAAAAAAAgD/NTJa63AQbvFOWvzyltlY94ttKvIZRFT0AAIA/AACAPwCYujsU1JC6ApgdNiBsFjE5KKQ5grZBtQAAgD8AAIA/M3DzPfmxxT5GcRy+Pd9+vomcnzt0WqO9AAAAAAAAAACmH889X6eJPmYDDr7+4I2+ZTMSvEpkRL0AAAAAAAAAAHODaD7Idas+RaTTvuvWML44SUY88s4ovgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+5C3XH1scUCUhpRSlIwBbJRL+4wBdJRHQJtgpsXSBsh1fZQoaAZoCWgPQwjCa5c2XLFyQJSGlFKUaBVL0mgWR0CbYKtJnQIEdX2UKGgGaAloD0MIaOxLNh5TcUCUhpRSlGgVS+ZoFkdAm2D9wBHTZ3V9lChoBmgJaA9DCDXTvU7qwHJAlIaUUpRoFUvuaBZHQJthGnbZezF1fZQoaAZoCWgPQwjbp+Mxg7FxQJSGlFKUaBVLy2gWR0CbYWOgxrSFdX2UKGgGaAloD0MIJv+Tv3sNTECUhpRSlGgVS7RoFkdAm2KsV58jRnV9lChoBmgJaA9DCFfp7jqbeXBAlIaUUpRoFUvlaBZHQJtjNj0+TvB1fZQoaAZoCWgPQwgzwtuD0DdxQJSGlFKUaBVLz2gWR0CbY4y/9Hc2dX2UKGgGaAloD0MIdF5jlyhFcUCUhpRSlGgVS9doFkdAm2PPjn3cpXV9lChoBmgJaA9DCHqM8szLwnJAlIaUUpRoFUvWaBZHQJtkBPwd8zB1fZQoaAZoCWgPQwgnM95WOgVzQJSGlFKUaBVL3WgWR0CbZCUNayKOdX2UKGgGaAloD0MIVRSvsja2cECUhpRSlGgVS89oFkdAm2RtVinYQXV9lChoBmgJaA9DCHwqpz0lo3JAlIaUUpRoFUu/aBZHQJtlVW1c+q11fZQoaAZoCWgPQwgVViqoaB1xQJSGlFKUaBVLyWgWR0CbZaA5q/M4dX2UKGgGaAloD0MIGArYDgbhcUCUhpRSlGgVS9RoFkdAm2XTUiILxHV9lChoBmgJaA9DCMuGNZUFunJAlIaUUpRoFU0hAWgWR0CbZh0cwQDndX2UKGgGaAloD0MIl8eakQE+cUCUhpRSlGgVS8toFkdAm2aLwz+FUXV9lChoBmgJaA9DCE8IHXSJkW1AlIaUUpRoFUvfaBZHQJtmuLR8c+91fZQoaAZoCWgPQwh9IHnn0PtuQJSGlFKUaBVL1WgWR0CbaEVzIV/MdX2UKGgGaAloD0MIGTp2UAmpckCUhpRSlGgVS7loFkdAm2jMujASF3V9lChoBmgJaA9DCKJ8QQuJV3NAlIaUUpRoFUvRaBZHQJto2SeRPoF1fZQoaAZoCWgPQwgno8owLjFxQJSGlFKUaBVLzWgWR0CbaR/Z/Tb4dX2UKGgGaAloD0MIdTqQ9dQccUCUhpRSlGgVS+xoFkdAm2qtcW0qpnV9lChoBmgJaA9DCBO3CmJgBHFAlIaUUpRoFUvsaBZHQJtq1YA80UJ1fZQoaAZoCWgPQwhoeomxjLVwQJSGlFKUaBVNBAFoFkdAm2v8dDIBBHV9lChoBmgJaA9DCFVNEHXfTnFAlIaUUpRoFUvJaBZHQJtsNf6XSjR1fZQoaAZoCWgPQwg9mBQfX61wQJSGlFKUaBVL1mgWR0CbbEi1RceKdX2UKGgGaAloD0MIuqP/5RqIcUCUhpRSlGgVS+5oFkdAm2xyTQmeDnV9lChoBmgJaA9DCAOy17t/sHFAlIaUUpRoFUvQaBZHQJts9vNu+AV1fZQoaAZoCWgPQwjPo+L/zudxQJSGlFKUaBVL7GgWR0Cbbf9nbqQjdX2UKGgGaAloD0MIF2ahndNGcUCUhpRSlGgVTRkBaBZHQJtuGK2rn1Z1fZQoaAZoCWgPQwgAxciSOZFxQJSGlFKUaBVLyGgWR0Cbb2wGnn+ydX2UKGgGaAloD0MIYf91bprRcUCUhpRSlGgVTb0CaBZHQJtvdQm/nGN1fZQoaAZoCWgPQwimttRBXmxxQJSGlFKUaBVL52gWR0Cbb5EcsDnvdX2UKGgGaAloD0MIWi4bnbPzcECUhpRSlGgVS9xoFkdAm2+0tuk1uXV9lChoBmgJaA9DCJkrg2pD2XFAlIaUUpRoFUvqaBZHQJtwFwcYIjZ1fZQoaAZoCWgPQwgxlX7CGa1xQJSGlFKUaBVL22gWR0CbcYWP91lodX2UKGgGaAloD0MInx7bMmCbcECUhpRSlGgVS81oFkdAm3KBJqZc9nV9lChoBmgJaA9DCDc10HxO7HFAlIaUUpRoFU0CAWgWR0CbcqRfF72MdX2UKGgGaAloD0MIm8qisIv0bkCUhpRSlGgVS+VoFkdAm4Xzv3JxN3V9lChoBmgJaA9DCMTMPo/R7W9AlIaUUpRoFUvjaBZHQJuGGLn9vTB1fZQoaAZoCWgPQwhKe4MvTO5yQJSGlFKUaBVL9mgWR0Cbhtg6EJ0GdX2UKGgGaAloD0MImrFoOjtQcECUhpRSlGgVS9loFkdAm4d4gvDgqHV9lChoBmgJaA9DCHKKjuRydXJAlIaUUpRoFUvcaBZHQJuHpbOeJ551fZQoaAZoCWgPQwimfAiqRtdKQJSGlFKUaBVLsWgWR0CbiFzundftdX2UKGgGaAloD0MIg94bQ4D/cECUhpRSlGgVTTABaBZHQJuJD2f02+B1fZQoaAZoCWgPQwgaogp/hh1yQJSGlFKUaBVL5mgWR0CbiY2KEWZadX2UKGgGaAloD0MI+0DyzuG5cECUhpRSlGgVTQUBaBZHQJuKORnvlU91fZQoaAZoCWgPQwgOoUrN3kdzQJSGlFKUaBVNGQFoFkdAm4sHMhX8wnV9lChoBmgJaA9DCLWoT3KH7XFAlIaUUpRoFUvpaBZHQJuLsLqlgtx1fZQoaAZoCWgPQwg26Etvf4ByQJSGlFKUaBVLxWgWR0CbjCPtD2J0dX2UKGgGaAloD0MIZB75g0HgcUCUhpRSlGgVS+BoFkdAm4yJ1ie/YnV9lChoBmgJaA9DCI+rkV3pFHFAlIaUUpRoFUvkaBZHQJuMireZXuF1fZQoaAZoCWgPQwh0YDlChixjQJSGlFKUaBVN6ANoFkdAm4zBxDLKWHV9lChoBmgJaA9DCHZR9MBH0HFAlIaUUpRoFU0lAWgWR0CbjwhESdvsdX2UKGgGaAloD0MI8KXwoNk1cUCUhpRSlGgVTRIBaBZHQJuPcKCxu891fZQoaAZoCWgPQwjqXbwf97ByQJSGlFKUaBVL92gWR0Cbj3hFmWdFdX2UKGgGaAloD0MIcGHdeHcDbkCUhpRSlGgVS89oFkdAm4+w7gbZOHV9lChoBmgJaA9DCMECmDIw2nFAlIaUUpRoFUv4aBZHQJuQQWrOqvN1fZQoaAZoCWgPQwj4wmSqYIFxQJSGlFKUaBVL3GgWR0CbkI6vJRwZdX2UKGgGaAloD0MId6IkJBIycUCUhpRSlGgVS9JoFkdAm5Do55qubXV9lChoBmgJaA9DCFD8GHOXuXFAlIaUUpRoFU03AWgWR0CbkUMUAT7EdX2UKGgGaAloD0MIMzUJ3pDuI8CUhpRSlGgVTegDaBZHQJuRdTl1bJR1fZQoaAZoCWgPQwjVl6WdWrVxQJSGlFKUaBVL9WgWR0CbkoIOYplSdX2UKGgGaAloD0MIqfbpeAxzckCUhpRSlGgVS9FoFkdAm5K9DlYEGXV9lChoBmgJaA9DCEUuOIP/BHFAlIaUUpRoFUvsaBZHQJuTKRuCPIZ1fZQoaAZoCWgPQwi9jc2OVBpwQJSGlFKUaBVL4mgWR0Cbk1wN9YwJdX2UKGgGaAloD0MI1jkGZK/PbkCUhpRSlGgVTRUBaBZHQJuT0zch1T11fZQoaAZoCWgPQwimfAiqRo9xQJSGlFKUaBVNAAFoFkdAm5PqIJqqO3V9lChoBmgJaA9DCIttUtHYem9AlIaUUpRoFUvpaBZHQJuV3lwLmZF1fZQoaAZoCWgPQwjVsN8Tq3ZzQJSGlFKUaBVL9WgWR0CblfwbVBlddX2UKGgGaAloD0MIyH2rdeIUc0CUhpRSlGgVTRcBaBZHQJuWmqBEroZ1fZQoaAZoCWgPQwg+WwcHO0hzQJSGlFKUaBVL3GgWR0CblqH58BuGdX2UKGgGaAloD0MIqOSc2MPPcUCUhpRSlGgVTQ0BaBZHQJuWr/4qPOp1fZQoaAZoCWgPQwht/l91pFhyQJSGlFKUaBVL+GgWR0CbltEmICU5dX2UKGgGaAloD0MICVOUSyPNckCUhpRSlGgVTQEBaBZHQJuXTM4cWCV1fZQoaAZoCWgPQwgH6/8cpoxwQJSGlFKUaBVNBwFoFkdAm5gybtqpLnV9lChoBmgJaA9DCGssYW2MhHFAlIaUUpRoFUvnaBZHQJuYc4ACGN91fZQoaAZoCWgPQwinr+drFvduQJSGlFKUaBVL4GgWR0CbmIDCxeLOdX2UKGgGaAloD0MIDjFe86omc0CUhpRSlGgVS9poFkdAm5jEC3gDR3V9lChoBmgJaA9DCJQXmYDft3JAlIaUUpRoFUvVaBZHQJuY180DU3J1fZQoaAZoCWgPQwi/Khcq/yZuQJSGlFKUaBVL1mgWR0CbmXk/KQq7dX2UKGgGaAloD0MIzO80mfETcECUhpRSlGgVS99oFkdAm5mY+wC8vnV9lChoBmgJaA9DCEPLun+sB3BAlIaUUpRoFUvUaBZHQJublqZc9nt1fZQoaAZoCWgPQwh3o4/5wIlyQJSGlFKUaBVL0mgWR0CbnC+wkgOjdX2UKGgGaAloD0MIXDy858CdckCUhpRSlGgVS+xoFkdAm5wvepGWlnV9lChoBmgJaA9DCJyIfm39P3JAlIaUUpRoFUvvaBZHQJudFj2Bas91fZQoaAZoCWgPQwjOwwlMZ7twQJSGlFKUaBVL8mgWR0CbnR7tiQT3dX2UKGgGaAloD0MI8nwG1JuGcECUhpRSlGgVS8doFkdAm52gQpWmxnV9lChoBmgJaA9DCGIs0y9RzXJAlIaUUpRoFUvsaBZHQJudrh3qzJJ1fZQoaAZoCWgPQwi8PQgBecNyQJSGlFKUaBVNEAFoFkdAm54fJFLFoHV9lChoBmgJaA9DCL9J06Do5W9AlIaUUpRoFUvhaBZHQJuejwx33Yd1fZQoaAZoCWgPQwgu5ueGplZiQJSGlFKUaBVN6ANoFkdAm574OpbUw3V9lChoBmgJaA9DCDKrd7id1HFAlIaUUpRoFUvhaBZHQJue/38GcF11fZQoaAZoCWgPQwjCNXf0/01wQJSGlFKUaBVL6WgWR0CbnyFx4ptrdX2UKGgGaAloD0MIj6m7sgujcUCUhpRSlGgVS/5oFkdAm59ioCMglnV9lChoBmgJaA9DCHzUX68wrXJAlIaUUpRoFUvvaBZHQJuf6h7E5yV1fZQoaAZoCWgPQwjYutQI/VlxQJSGlFKUaBVL7WgWR0Cbn/xh2GIsdX2UKGgGaAloD0MIYkuPpvpAb0CUhpRSlGgVS9doFkdAm6HptSAH3XV9lChoBmgJaA9DCJXx7zOufnFAlIaUUpRoFUvZaBZHQJuh+mMwUQF1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 492,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f91772c56d0244bd9ca9369e13418fdde040f5fe51732bd9052cafb1da98bb96
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:648d32403080adaeaebeae4f1b067df2db5057071e99b13b353f29e71d5509a7
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa6682eceff41a324c02b367022c6efd776cbd9aaf9f403020ec24600c8cf52c
|
3 |
+
size 220758
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 277.7061305210076, "std_reward": 13.895087149803098, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T16:16:05.784127"}
|