AdityaNerpagar commited on
Commit
1c895bd
·
verified ·
1 Parent(s): 18088cb
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 264.67 +/- 17.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b80be1c4f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b80be1c5000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b80be1c5090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b80be1c5120>", "_build": "<function ActorCriticPolicy._build at 0x7b80be1c51b0>", "forward": "<function ActorCriticPolicy.forward at 0x7b80be1c5240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b80be1c52d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b80be1c5360>", "_predict": "<function ActorCriticPolicy._predict at 0x7b80be1c53f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b80be1c5480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b80be1c5510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b80be1c55a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b80be15fc80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711100777669295484, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAOa7Qr0TXJI/9hVTvvCILb/lyN686UMRvQAAAAAAAAAAZp78PDgvxj0d/Xu+wP1MvuUFM76NX+49AAAAAAAAAABaR36+4n24Pqqlgj4hmZS+ggEuPKldoz0AAAAAAAAAAECG9z34yJk9TREZvq5Fhr5bDRu7EteAvQAAAAAAAAAAjYe9vVyvfbo2m+S7P4moPEubFbsqxJG9AAAAAAAAgD+aZSA8gRG0P/CJdT0rDlm+e+LPPJOz9zwAAAAAAAAAAM1ppL17ReA9lks9Po3LO74COa498vSNPQAAAAAAAAAA82ATvjTyHD85Pbu9l+nevhabs73Wqxo9AAAAAAAAAABa97q9up6JP3Meb751ixq/YMW5vY8ikL0AAAAAAAAAAIBdDb6uxd66yn22s5bI5K8MWuQ6SvvKMwAAgD8AAIA/mpp9vQdcsD/EQye/ts5qvnzORTy6Lre9AAAAAAAAAAAAG7U9/+2tP1tAsD6T9se+2wemPZ4kCD0AAAAAAAAAALN0O75hGZS8AhMaODT42LPQWwI+4Mo2twAAgD8AAIA/ZuCcPSZcsD/DtQo/RsGLvhp0Bz1L62s+AAAAAAAAAADN3Rc+3A6NPvGPSL21E5y+B0dbPUZLRLwAAAAAAAAAAHMy9b3XAwO7yKVrPG6MuTxprZU8B1mfvQAAgD8AAIA/ZmboucOtPLrOCSMzZMqTMN+tCjv4osKzAACAPwAAgD+aveA7KAO3P3KTYj4cgoE+cYMsu4FWgTwAAAAAAAAAADPNwzzGhK8/hR0WP+of9r6zuYG8VhORvAAAAAAAAAAAOs0nvk/rOryCAIc6ohKdOIuMsj3w27K5AACAPwAAgD+ai7O8UgjkuQr7zDdxijMzeMh3O9AM87YAAIA/AACAP0Bevr3DpRS6AEyvusRJsrVFCdg76qnROQAAgD8AAIA/k40ivs84ebx3BYC7pswcumPt3T3jS/M6AACAPwAAgD+AyR+9xeh+P52cqb0rDyG/see/vI3u3rwAAAAAAAAAAM0HtD2uuau6zuNFNwlyRzKObjQ6Al9jtgAAgD8AAIA/mssfvlw8FbyWSGG6bQpLuJ0Yij20uJU5AACAPwAAgD/dNpA+LGdAP9WaVr1/yRO/v4mGPtbzTr4AAAAAAAAAAHrvDb7juYw+/XWcugt1ob7c1zG8nZdPPQAAAAAAAAAA8+QTvmF63zuLReI9fmAYvAlFQr2RvCw9AAAAAAAAgD86yjs+MQOaPixulL7FMrS+K/4PPGweI70AAAAAAAAAAM1jHL7c7Te8vnSjuzOYG7oY05490Nn/OgAAgD8AAIA/M17+PaeUwD6UESK+IF2lvv81BD1X5py9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6ATJZGKAKMAWyUS9qMAXSUR0Ck7ahIWgvldX2UKGgGR0BzG8iILw4LaAdL1mgIR0Ck7fuYIBzWdX2UKGgGR0BjnlGqgh8qaAdN6ANoCEdApO4G0b961XV9lChoBkdAb2r+G47Rv2gHS89oCEdApO4VJ4B3inV9lChoBkdAcXMAXl8w6GgHS8xoCEdApO57WkJrtXV9lChoBkdAc9I4EOiFkGgHS8toCEdApO6dz+3pfXV9lChoBkdAcPG7kGRmsmgHS/FoCEdApO64lIEr5XV9lChoBkdAcb9Uwi7kGWgHS8xoCEdApO7sU7CBPXV9lChoBkdAcDhiFTNt7GgHS8doCEdApO9u16Vt43V9lChoBkdAcAJvm5lOGmgHS+hoCEdApO+FeQdS23V9lChoBkdAcpK23azu4WgHS+xoCEdApO/YKF7D23V9lChoBkdAcTMWyTpxFWgHS/9oCEdApPAH7m+0xHV9lChoBkdAcb+2W6bvw2gHS95oCEdApPAi9M9KVnV9lChoBkdAciRGR3eN1mgHS9NoCEdApPBlL39JjHV9lChoBkdAcHEnqVyFPGgHS+JoCEdApPBuPV/c33V9lChoBkdAbd/TgEU0vWgHS9doCEdApPCsj/uLJnV9lChoBkdAb1Ia3I+4b2gHS85oCEdApPFVWbPQfXV9lChoBkdAcvTWDpTuOWgHS/xoCEdApPGvBFd9lXV9lChoBkdAcI1fj0cwQGgHS9poCEdApPHOcjJMg3V9lChoBkdAcITOG0u14WgHS+5oCEdApPIMJF9a2XV9lChoBkdAcXKFLWZqmGgHS+hoCEdApPLnv+fh/HV9lChoBkdAcBbLMcIZ62gHS9BoCEdApPMd4oqkM3V9lChoBkdAXZrn5i3G42gHTegDaAhHQKTzRbypaRp1fZQoaAZHQHD+IqgAZKpoB0vOaAhHQKTzS6NlyzZ1fZQoaAZHQHBtArlNlAhoB0vYaAhHQKTz8BbwBo51fZQoaAZHQHIFYnjQzDZoB0vhaAhHQKT0Rs1KoQ51fZQoaAZHQG3s+KbayrxoB0vWaAhHQKT0jwXIlt11fZQoaAZHQHBFAAZKnNxoB0vjaAhHQKT0x+98JD51fZQoaAZHQHCO7pJPIn1oB0vZaAhHQKT0+VJL/S91fZQoaAZHQHIDVi4J/odoB0vpaAhHQKT1ONQTEit1fZQoaAZHQHE6Jb6guh9oB00nAWgIR0Ck9X4fGMn7dX2UKGgGR0BkQWZTho/SaAdN6ANoCEdApPXdr0rbxnV9lChoBkdAcHjhHskY42gHS+poCEdApPYeyX2M9HV9lChoBkdAcuNBcAzYVmgHS91oCEdApPY9A1Nxl3V9lChoBkdAcoc3L3bmEGgHS+RoCEdApPaMN4JNTXV9lChoBkdAcWLAP/aQFWgHS/loCEdApPbV6NVBEHV9lChoBkdAcVOldkauOmgHTQkBaAhHQKT25uKoAGV1fZQoaAZHQGxA5NXYDkloB0vyaAhHQKT3OuzQeFN1fZQoaAZHQHDhWoaUA1hoB0vFaAhHQKT3c8B+4LF1fZQoaAZHQG3YjQ7cO9ZoB0vnaAhHQKT4DdXT3Ix1fZQoaAZHQHGhrUXpGF1oB0vCaAhHQKT5TZAY51h1fZQoaAZHQHEUknb7CSBoB0v0aAhHQKT5pp1zQu51fZQoaAZHQHEMTFhoduJoB00IAWgIR0Ck+eIjOcDsdX2UKGgGR0ByQxPi1iOOaAdL4GgIR0Ck+gDZcs19dX2UKGgGR0BzcqAI6bONaAdNMgFoCEdApPoLdJrckHV9lChoBkdAcZqy4FzMimgHS+1oCEdApPsEqx1PnHV9lChoBkdAbqPta6jFh2gHTWgBaAhHQKT76PIXCTF1fZQoaAZHQG+rAskIHC5oB0vQaAhHQKT8C5imVJN1fZQoaAZHQGHTueJ53TxoB03oA2gIR0Ck/BlHrhR7dX2UKGgGR0BxqTkQwsXjaAdL5WgIR0Ck/CT0xubadX2UKGgGR0BweHOPeYUnaAdNDgFoCEdApPwkyULUkXV9lChoBkdAcnKMbFS88WgHS/RoCEdApPxAI2OyV3V9lChoBkdAcTXygwoLHGgHS+VoCEdApPzIDRtxdnV9lChoBkdAcndqt5le4WgHS/loCEdApPzsmF8G93V9lChoBkdAcfiytV7x/mgHS+RoCEdApPz3VurIYHV9lChoBkdAb5hcbBGhEmgHS9JoCEdApP1O6Ae7tnV9lChoBkdAcHFN+so2GmgHS8NoCEdApP1N8NQTEnV9lChoBkdAciQ7VJ+UhWgHS+toCEdApP1kEvCdjHV9lChoBkdAcW3W5paibmgHS91oCEdApP1gHHFPznV9lChoBkdAbnQ1IAfdRGgHS99oCEdApP5AWepXIXV9lChoBkdAco+xDLKV6mgHS/hoCEdApP5a44Ia+HV9lChoBkdAcb8RRdhRZWgHS9doCEdApP5nsNUfgnV9lChoBkdAXU9FlTWGy2gHTegDaAhHQKT+Zx4ptrN1fZQoaAZHQHDORplBhQZoB0vDaAhHQKT+hfR/mT11fZQoaAZHQG9RJFkQPI5oB0vVaAhHQKT+jfLs8gZ1fZQoaAZHQGSCrWiDdxhoB03oA2gIR0Ck/7eE7GNrdX2UKGgGR0BsS+Pgeii7aAdL32gIR0ClAE4EwFkhdX2UKGgGR0ByagaUA1ejaAdL7GgIR0ClAGrksBhhdX2UKGgGR0ByGkC2c8T0aAdL22gIR0ClAHMRQJokdX2UKGgGR0BuLLZcs189aAdL82gIR0ClAP0cGTs6dX2UKGgGR0Bja9uNxVABaAdN6ANoCEdApQEKvicXnHV9lChoBkdAcXjMcIZ62WgHS+BoCEdApQE+8kD6nHV9lChoBkdAcLTxQizLOmgHS8toCEdApQFOh4+r2nV9lChoBkdAcSJxCIDYAmgHS9BoCEdApQGE6mwaBXV9lChoBkdAbzt0GNaQm2gHS89oCEdApQGW4oZydXV9lChoBkdAcdiySV4X42gHS+BoCEdApQHfmLcbi3V9lChoBkdAXfMOFxn3+WgHTegDaAhHQKUCFS6UaAF1fZQoaAZHQHJsbyMDOkdoB00cAWgIR0ClAiGG21D0dX2UKGgGR0BxiAVzp5eJaAdLuWgIR0ClAh1VxS5zdX2UKGgGR0BvD69XcQAdaAdLz2gIR0ClAkdIf8uSdX2UKGgGR0By+Nr1uivgaAdL0GgIR0ClAqBM8HObdX2UKGgGR0ByBUk8ifQKaAdL02gIR0ClAsiI+GGmdX2UKGgGR0BxxD81n/T9aAdL5mgIR0ClAsx95QgtdX2UKGgGR0BxRVD7ZWaMaAdL32gIR0ClAv5s0pEydX2UKGgGR0BwPe/XXiBHaAdL0GgIR0ClA47ihnJ1dX2UKGgGR0Bs1lGy5Zr6aAdL2mgIR0ClBBg8jiXIdX2UKGgGR0BwfR1fVqetaAdL5GgIR0ClBDEL6UJOdX2UKGgGR0BwccVqN6w/aAdL5mgIR0ClBFTiS7oTdX2UKGgGR0BywRu4wyqNaAdL6WgIR0ClBGgUcn3MdX2UKGgGR0Bvyo/FBIFvaAdL82gIR0ClBNOm78NydX2UKGgGR0Bt37o4dZJTaAdL1WgIR0ClBTVpsXSCdX2UKGgGR0BySJng5zYFaAdL2GgIR0ClBeIVEd/8dX2UKGgGR0BxF8lPacqfaAdL3WgIR0ClBi59Vmz0dX2UKGgGR0BwTgaR6nivaAdL6GgIR0ClBnqHoHLSdX2UKGgGR0BmW9ycTakAaAdN6ANoCEdApQaVvfj0c3V9lChoBkdAcf4WSEDhcmgHS8hoCEdApQbHb0voNnV9lChoBkdAYOBVPN3W4GgHTegDaAhHQKUG2sAeaKF1fZQoaAZHQHAcT/2kBS1oB0vMaAhHQKUG98pCrtF1fZQoaAZHQHCsi+QEIPdoB0vmaAhHQKUHFrGipNt1fZQoaAZHQHK0VvhqCYloB0vpaAhHQKUHHaMaS9x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (161 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.6693735, "std_reward": 17.407773543519312, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-22T10:41:01.605690"}
t1-ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b2c76d40eccdd350a10d8ba5adbe8c3b963570e1e3432053064bd6ccaead221
3
+ size 148675
t1-ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
t1-ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b80be1c4f70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b80be1c5000>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b80be1c5090>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b80be1c5120>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b80be1c51b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b80be1c5240>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b80be1c52d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b80be1c5360>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b80be1c53f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b80be1c5480>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b80be1c5510>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b80be1c55a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b80be15fc80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2031616,
25
+ "_total_timesteps": 2000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1711100777669295484,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAOa7Qr0TXJI/9hVTvvCILb/lyN686UMRvQAAAAAAAAAAZp78PDgvxj0d/Xu+wP1MvuUFM76NX+49AAAAAAAAAABaR36+4n24Pqqlgj4hmZS+ggEuPKldoz0AAAAAAAAAAECG9z34yJk9TREZvq5Fhr5bDRu7EteAvQAAAAAAAAAAjYe9vVyvfbo2m+S7P4moPEubFbsqxJG9AAAAAAAAgD+aZSA8gRG0P/CJdT0rDlm+e+LPPJOz9zwAAAAAAAAAAM1ppL17ReA9lks9Po3LO74COa498vSNPQAAAAAAAAAA82ATvjTyHD85Pbu9l+nevhabs73Wqxo9AAAAAAAAAABa97q9up6JP3Meb751ixq/YMW5vY8ikL0AAAAAAAAAAIBdDb6uxd66yn22s5bI5K8MWuQ6SvvKMwAAgD8AAIA/mpp9vQdcsD/EQye/ts5qvnzORTy6Lre9AAAAAAAAAAAAG7U9/+2tP1tAsD6T9se+2wemPZ4kCD0AAAAAAAAAALN0O75hGZS8AhMaODT42LPQWwI+4Mo2twAAgD8AAIA/ZuCcPSZcsD/DtQo/RsGLvhp0Bz1L62s+AAAAAAAAAADN3Rc+3A6NPvGPSL21E5y+B0dbPUZLRLwAAAAAAAAAAHMy9b3XAwO7yKVrPG6MuTxprZU8B1mfvQAAgD8AAIA/ZmboucOtPLrOCSMzZMqTMN+tCjv4osKzAACAPwAAgD+aveA7KAO3P3KTYj4cgoE+cYMsu4FWgTwAAAAAAAAAADPNwzzGhK8/hR0WP+of9r6zuYG8VhORvAAAAAAAAAAAOs0nvk/rOryCAIc6ohKdOIuMsj3w27K5AACAPwAAgD+ai7O8UgjkuQr7zDdxijMzeMh3O9AM87YAAIA/AACAP0Bevr3DpRS6AEyvusRJsrVFCdg76qnROQAAgD8AAIA/k40ivs84ebx3BYC7pswcumPt3T3jS/M6AACAPwAAgD+AyR+9xeh+P52cqb0rDyG/see/vI3u3rwAAAAAAAAAAM0HtD2uuau6zuNFNwlyRzKObjQ6Al9jtgAAgD8AAIA/mssfvlw8FbyWSGG6bQpLuJ0Yij20uJU5AACAPwAAgD/dNpA+LGdAP9WaVr1/yRO/v4mGPtbzTr4AAAAAAAAAAHrvDb7juYw+/XWcugt1ob7c1zG8nZdPPQAAAAAAAAAA8+QTvmF63zuLReI9fmAYvAlFQr2RvCw9AAAAAAAAgD86yjs+MQOaPixulL7FMrS+K/4PPGweI70AAAAAAAAAAM1jHL7c7Te8vnSjuzOYG7oY05490Nn/OgAAgD8AAIA/M17+PaeUwD6UESK+IF2lvv81BD1X5py9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6ATJZGKAKMAWyUS9qMAXSUR0Ck7ahIWgvldX2UKGgGR0BzG8iILw4LaAdL1mgIR0Ck7fuYIBzWdX2UKGgGR0BjnlGqgh8qaAdN6ANoCEdApO4G0b961XV9lChoBkdAb2r+G47Rv2gHS89oCEdApO4VJ4B3inV9lChoBkdAcXMAXl8w6GgHS8xoCEdApO57WkJrtXV9lChoBkdAc9I4EOiFkGgHS8toCEdApO6dz+3pfXV9lChoBkdAcPG7kGRmsmgHS/FoCEdApO64lIEr5XV9lChoBkdAcb9Uwi7kGWgHS8xoCEdApO7sU7CBPXV9lChoBkdAcDhiFTNt7GgHS8doCEdApO9u16Vt43V9lChoBkdAcAJvm5lOGmgHS+hoCEdApO+FeQdS23V9lChoBkdAcpK23azu4WgHS+xoCEdApO/YKF7D23V9lChoBkdAcTMWyTpxFWgHS/9oCEdApPAH7m+0xHV9lChoBkdAcb+2W6bvw2gHS95oCEdApPAi9M9KVnV9lChoBkdAciRGR3eN1mgHS9NoCEdApPBlL39JjHV9lChoBkdAcHEnqVyFPGgHS+JoCEdApPBuPV/c33V9lChoBkdAbd/TgEU0vWgHS9doCEdApPCsj/uLJnV9lChoBkdAb1Ia3I+4b2gHS85oCEdApPFVWbPQfXV9lChoBkdAcvTWDpTuOWgHS/xoCEdApPGvBFd9lXV9lChoBkdAcI1fj0cwQGgHS9poCEdApPHOcjJMg3V9lChoBkdAcITOG0u14WgHS+5oCEdApPIMJF9a2XV9lChoBkdAcXKFLWZqmGgHS+hoCEdApPLnv+fh/HV9lChoBkdAcBbLMcIZ62gHS9BoCEdApPMd4oqkM3V9lChoBkdAXZrn5i3G42gHTegDaAhHQKTzRbypaRp1fZQoaAZHQHD+IqgAZKpoB0vOaAhHQKTzS6NlyzZ1fZQoaAZHQHBtArlNlAhoB0vYaAhHQKTz8BbwBo51fZQoaAZHQHIFYnjQzDZoB0vhaAhHQKT0Rs1KoQ51fZQoaAZHQG3s+KbayrxoB0vWaAhHQKT0jwXIlt11fZQoaAZHQHBFAAZKnNxoB0vjaAhHQKT0x+98JD51fZQoaAZHQHCO7pJPIn1oB0vZaAhHQKT0+VJL/S91fZQoaAZHQHIDVi4J/odoB0vpaAhHQKT1ONQTEit1fZQoaAZHQHE6Jb6guh9oB00nAWgIR0Ck9X4fGMn7dX2UKGgGR0BkQWZTho/SaAdN6ANoCEdApPXdr0rbxnV9lChoBkdAcHjhHskY42gHS+poCEdApPYeyX2M9HV9lChoBkdAcuNBcAzYVmgHS91oCEdApPY9A1Nxl3V9lChoBkdAcoc3L3bmEGgHS+RoCEdApPaMN4JNTXV9lChoBkdAcWLAP/aQFWgHS/loCEdApPbV6NVBEHV9lChoBkdAcVOldkauOmgHTQkBaAhHQKT25uKoAGV1fZQoaAZHQGxA5NXYDkloB0vyaAhHQKT3OuzQeFN1fZQoaAZHQHDhWoaUA1hoB0vFaAhHQKT3c8B+4LF1fZQoaAZHQG3YjQ7cO9ZoB0vnaAhHQKT4DdXT3Ix1fZQoaAZHQHGhrUXpGF1oB0vCaAhHQKT5TZAY51h1fZQoaAZHQHEUknb7CSBoB0v0aAhHQKT5pp1zQu51fZQoaAZHQHEMTFhoduJoB00IAWgIR0Ck+eIjOcDsdX2UKGgGR0ByQxPi1iOOaAdL4GgIR0Ck+gDZcs19dX2UKGgGR0BzcqAI6bONaAdNMgFoCEdApPoLdJrckHV9lChoBkdAcZqy4FzMimgHS+1oCEdApPsEqx1PnHV9lChoBkdAbqPta6jFh2gHTWgBaAhHQKT76PIXCTF1fZQoaAZHQG+rAskIHC5oB0vQaAhHQKT8C5imVJN1fZQoaAZHQGHTueJ53TxoB03oA2gIR0Ck/BlHrhR7dX2UKGgGR0BxqTkQwsXjaAdL5WgIR0Ck/CT0xubadX2UKGgGR0BweHOPeYUnaAdNDgFoCEdApPwkyULUkXV9lChoBkdAcnKMbFS88WgHS/RoCEdApPxAI2OyV3V9lChoBkdAcTXygwoLHGgHS+VoCEdApPzIDRtxdnV9lChoBkdAcndqt5le4WgHS/loCEdApPzsmF8G93V9lChoBkdAcfiytV7x/mgHS+RoCEdApPz3VurIYHV9lChoBkdAb5hcbBGhEmgHS9JoCEdApP1O6Ae7tnV9lChoBkdAcHFN+so2GmgHS8NoCEdApP1N8NQTEnV9lChoBkdAciQ7VJ+UhWgHS+toCEdApP1kEvCdjHV9lChoBkdAcW3W5paibmgHS91oCEdApP1gHHFPznV9lChoBkdAbnQ1IAfdRGgHS99oCEdApP5AWepXIXV9lChoBkdAco+xDLKV6mgHS/hoCEdApP5a44Ia+HV9lChoBkdAcb8RRdhRZWgHS9doCEdApP5nsNUfgnV9lChoBkdAXU9FlTWGy2gHTegDaAhHQKT+Zx4ptrN1fZQoaAZHQHDORplBhQZoB0vDaAhHQKT+hfR/mT11fZQoaAZHQG9RJFkQPI5oB0vVaAhHQKT+jfLs8gZ1fZQoaAZHQGSCrWiDdxhoB03oA2gIR0Ck/7eE7GNrdX2UKGgGR0BsS+Pgeii7aAdL32gIR0ClAE4EwFkhdX2UKGgGR0ByagaUA1ejaAdL7GgIR0ClAGrksBhhdX2UKGgGR0ByGkC2c8T0aAdL22gIR0ClAHMRQJokdX2UKGgGR0BuLLZcs189aAdL82gIR0ClAP0cGTs6dX2UKGgGR0Bja9uNxVABaAdN6ANoCEdApQEKvicXnHV9lChoBkdAcXjMcIZ62WgHS+BoCEdApQE+8kD6nHV9lChoBkdAcLTxQizLOmgHS8toCEdApQFOh4+r2nV9lChoBkdAcSJxCIDYAmgHS9BoCEdApQGE6mwaBXV9lChoBkdAbzt0GNaQm2gHS89oCEdApQGW4oZydXV9lChoBkdAcdiySV4X42gHS+BoCEdApQHfmLcbi3V9lChoBkdAXfMOFxn3+WgHTegDaAhHQKUCFS6UaAF1fZQoaAZHQHJsbyMDOkdoB00cAWgIR0ClAiGG21D0dX2UKGgGR0BxiAVzp5eJaAdLuWgIR0ClAh1VxS5zdX2UKGgGR0BvD69XcQAdaAdLz2gIR0ClAkdIf8uSdX2UKGgGR0By+Nr1uivgaAdL0GgIR0ClAqBM8HObdX2UKGgGR0ByBUk8ifQKaAdL02gIR0ClAsiI+GGmdX2UKGgGR0BxxD81n/T9aAdL5mgIR0ClAsx95QgtdX2UKGgGR0BxRVD7ZWaMaAdL32gIR0ClAv5s0pEydX2UKGgGR0BwPe/XXiBHaAdL0GgIR0ClA47ihnJ1dX2UKGgGR0Bs1lGy5Zr6aAdL2mgIR0ClBBg8jiXIdX2UKGgGR0BwfR1fVqetaAdL5GgIR0ClBDEL6UJOdX2UKGgGR0BwccVqN6w/aAdL5mgIR0ClBFTiS7oTdX2UKGgGR0BywRu4wyqNaAdL6WgIR0ClBGgUcn3MdX2UKGgGR0Bvyo/FBIFvaAdL82gIR0ClBNOm78NydX2UKGgGR0Bt37o4dZJTaAdL1WgIR0ClBTVpsXSCdX2UKGgGR0BySJng5zYFaAdL2GgIR0ClBeIVEd/8dX2UKGgGR0BxF8lPacqfaAdL3WgIR0ClBi59Vmz0dX2UKGgGR0BwTgaR6nivaAdL6GgIR0ClBnqHoHLSdX2UKGgGR0BmW9ycTakAaAdN6ANoCEdApQaVvfj0c3V9lChoBkdAcf4WSEDhcmgHS8hoCEdApQbHb0voNnV9lChoBkdAYOBVPN3W4GgHTegDaAhHQKUG2sAeaKF1fZQoaAZHQHAcT/2kBS1oB0vMaAhHQKUG98pCrtF1fZQoaAZHQHCsi+QEIPdoB0vmaAhHQKUHFrGipNt1fZQoaAZHQHK0VvhqCYloB0vpaAhHQKUHHaMaS9x1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 32,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
t1-ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92ab9de1c38c4a9406994f2afea911e8b0646bb1a483eebe70e96ebc380c87a7
3
+ size 88362
t1-ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21f60ebc26c52b63d02153cbb43a23403eb3c24d2184bf4509ec035d59ab8496
3
+ size 43762
t1-ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
t1-ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2