Upload 8 files
Browse files- .gitattributes +1 -0
- app.py +86 -0
- best.reg.joblib +3 -0
- micro_world_139countries.csv +3 -0
- model.joblib +3 -0
- model_best.joblib +3 -0
- model_xgb.joblib +3 -0
- requirements.txt +11 -0
- scaler.joblib +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
micro_world_139countries.csv filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import joblib
|
5 |
+
from xgboost import XGBRegressor
|
6 |
+
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
7 |
+
import shap
|
8 |
+
from streamlit_shap import st_shap
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# Page configuration
|
13 |
+
st.set_page_config(
|
14 |
+
page_title="Medical Costs Concern Prediction",)
|
15 |
+
|
16 |
+
st.title('Predict Medical Costs Concern')
|
17 |
+
|
18 |
+
# Load model and preprocessing objects
|
19 |
+
@st.cache_resource
|
20 |
+
def load_model_objects():
|
21 |
+
model_xgb = joblib.load('model_best.joblib')
|
22 |
+
scaler = joblib.load('scaler.joblib')
|
23 |
+
return model_xgb, scaler
|
24 |
+
|
25 |
+
model_xgb, scaler = load_model_objects()
|
26 |
+
# Create SHAP explainer
|
27 |
+
explainer = shap.TreeExplainer(model_xgb)
|
28 |
+
|
29 |
+
# App description
|
30 |
+
with st.expander("What's this app?"):
|
31 |
+
st.markdown("""
|
32 |
+
This app predicts how worried a person is about medical costs, based on factors like age, education, income, and employment status.
|
33 |
+
We've trained an AI model to analyze these inputs and give a prediction.
|
34 |
+
""")
|
35 |
+
|
36 |
+
st.subheader('Describe yourself')
|
37 |
+
|
38 |
+
# User inputs
|
39 |
+
col1, col2 = st.columns(2)
|
40 |
+
|
41 |
+
with col1:
|
42 |
+
age = st.number_input('Age', min_value=18, max_value=100, value=30)
|
43 |
+
education = st.selectbox('Education Level', options=['Primary', 'Secondary', 'Tertiary'], index=1)
|
44 |
+
income_quartile = st.radio('Income Quartile', options=['Lowest', 'Second', 'Third', 'Highest'])
|
45 |
+
|
46 |
+
with col2:
|
47 |
+
employment_status = st.selectbox('Employment Status', options=['Unemployed', 'Employed', 'Self-employed', 'Student'], index=1)
|
48 |
+
|
49 |
+
# Map user inputs to numerical and categorical features
|
50 |
+
education_mapping = {'Primary': 1, 'Secondary': 2, 'Tertiary': 3}
|
51 |
+
income_mapping = {'Lowest': 1, 'Second': 2, 'Third': 3, 'Highest': 4}
|
52 |
+
employment_mapping = {'Unemployed': 0, 'Employed': 1, 'Self-employed': 2, 'Student': 3}
|
53 |
+
|
54 |
+
# Transform user input into a feature vector
|
55 |
+
education_num = education_mapping[education]
|
56 |
+
income_num = income_mapping[income_quartile]
|
57 |
+
employment_num = employment_mapping[employment_status]
|
58 |
+
|
59 |
+
# Prepare features for the model
|
60 |
+
num_features = pd.DataFrame({
|
61 |
+
'age': [age],
|
62 |
+
'educ': [education_num],
|
63 |
+
'inc_q': [income_num],
|
64 |
+
'emp_in': [employment_num]
|
65 |
+
})
|
66 |
+
num_scaled = pd.DataFrame(scaler.transform(num_features), columns=num_features.columns)
|
67 |
+
|
68 |
+
# Prediction button
|
69 |
+
if st.button('Predict Concern Level'):
|
70 |
+
# Make prediction
|
71 |
+
predicted_concern = model_xgb.predict(num_scaled)[0]
|
72 |
+
# Display prediction
|
73 |
+
st.metric(label="Predicted concern level", value=f'{round(predicted_concern)} (1: Not Worried, 3: Very Worried)')
|
74 |
+
# SHAP explanation
|
75 |
+
st.subheader('Concern Factors Explained')
|
76 |
+
shap_values = explainer.shap_values(num_scaled)
|
77 |
+
st_shap(shap.force_plot(explainer.expected_value, shap_values, num_scaled), height=400, width=600)
|
78 |
+
st.markdown("""
|
79 |
+
This plot shows how each feature contributes to the predicted concern level:
|
80 |
+
- Blue bars push the concern level lower
|
81 |
+
- Red bars push the concern level higher
|
82 |
+
- The length of each bar indicates the strength of the feature's impact
|
83 |
+
""")
|
84 |
+
|
85 |
+
# Footer
|
86 |
+
st.markdown("---")
|
best.reg.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c26ee9bad4da71cbed2f0d14951c9c2190dd0aa38f8ce5ea1a958deca783b193
|
3 |
+
size 15738433
|
micro_world_139countries.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98ee1367d02f92b04d0933584a4620516b90ed5f9c554f867fa5037f3f721f7a
|
3 |
+
size 40174289
|
model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6b19da76907416fb6f5ddbfd53d2fcf4b13750fb06085a849548fc9fdaf4260
|
3 |
+
size 649
|
model_best.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b74d7f67e3cebb5a921fd0e7bb84350f3e34ef31932ec2022c4f91d5cec95dc
|
3 |
+
size 199835
|
model_xgb.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5c6b831025998da9aec179e66d952943e387e890bb3a0cbd2696d4cb9c9df5c
|
3 |
+
size 460166
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
streamlit
|
3 |
+
pandas
|
4 |
+
altair
|
5 |
+
matplotlib
|
6 |
+
seaborn
|
7 |
+
scipy
|
8 |
+
joblib
|
9 |
+
xgboost
|
10 |
+
shap
|
11 |
+
streamlit_shap
|
scaler.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81342eb8c5ddbf89d9b2b7e14d5e3c3ae0c0adb8d85c6332b78c139983c13a5e
|
3 |
+
size 1047
|