AdiKompella commited on
Commit
94604e5
·
1 Parent(s): e012e26

Uploaded PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -8,16 +8,17 @@ tags:
8
  model-index:
9
  - name: PPO
10
  results:
11
- - metrics:
12
- - type: mean_reward
13
- value: 221.04 +/- 19.00
14
- name: mean_reward
15
- task:
16
  type: reinforcement-learning
17
  name: reinforcement-learning
18
  dataset:
19
  name: LunarLander-v2
20
  type: LunarLander-v2
 
 
 
 
 
21
  ---
22
 
23
  # **PPO** Agent playing **LunarLander-v2**
 
8
  model-index:
9
  - name: PPO
10
  results:
11
+ - task:
 
 
 
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
  name: LunarLander-v2
16
  type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.14 +/- 16.01
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
 
24
  # **PPO** Agent playing **LunarLander-v2**
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f26b051db00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f26b051db90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f26b051dc20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f26b051dcb0>", "_build": "<function ActorCriticPolicy._build at 0x7f26b051dd40>", "forward": "<function ActorCriticPolicy.forward at 0x7f26b051ddd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f26b051de60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f26b051def0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f26b051df80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f26b0524050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f26b05240e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f26b05752a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656261235.457888, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAk8aUvqn76T4Soji8KSSCvqZK9jvEBjK9AAAAAAAAAAANv20+FOrpvOvE7DrmLHO5MupQvh3PGboAAIA/AACAPyM3jD6tcEg/jAi3vRs4oL7YJwi+VriXvQAAAAAAAAAAmmFAu8FsVj8+SbO9Lc1nvm7ECT4cazo9AAAAAAAAAAAQtdo+tAAuP9oVAL4kkke+KNYtPjnkN74AAAAAAAAAAJrvMzwSLQg/+yRTPNX9UL5p4VO95kfqvQAAAAAAAAAAmo70PI9uZbqT/xQ5z9I+NFH0k7mO1ii4AACAPwAAgD+TeAQ+c59zP2J2Jb2BRH2+rqPfPQZ4AL4AAAAAAAAAAAYxeD59Iye9WidmOlUcH7nfYpG+KwyfuQAAgD8AAIA/GhIGv0QzHr6+EtQ86m4su22EDD6GfZY8AACAPwAAgD9nGgW/+h5BvtfKmrns7xi4obQcPhVMDTkAAIA/AACAPwBw+Tv2cHq6ODhZOqaHWbUy1nw7YtJ3uQAAgD8AAIA/QHzgPWnVRrwuYxs9zcOMvIItGz0G7Ew9AACAPwAAgD/gs24+BdHnu9ouv7uZoBI5OhkvvUut8DkAAIA/AACAP7OTXL24xty5ytpJOwClPDXYVby5FkZxugAAgD8AAIA/gO6WvRTGnrrBJ7g6dznaMzZV67rKqdG5AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUPutnSjHXECUhpRSlIwBbJRN6AOMAXSUR0B5j3C3w1BMdX2UKGgGaAloD0MITS8xlumSVkCUhpRSlGgVTegDaBZHQHmRUt7KJVN1fZQoaAZoCWgPQwjCpPj4BKNhQJSGlFKUaBVN6ANoFkdAeZbQU5+6RXV9lChoBmgJaA9DCK98lufBOmLAlIaUUpRoFU2WAWgWR0B5oZ9kSVW0dX2UKGgGaAloD0MIvVMB9zwdXECUhpRSlGgVTegDaBZHQHmu0Es8PnV1fZQoaAZoCWgPQwiIDRZO0uRVQJSGlFKUaBVN6ANoFkdAebDc6eXiSHV9lChoBmgJaA9DCCWQEru2txHAlIaUUpRoFUvLaBZHQHnU4wAU+LZ1fZQoaAZoCWgPQwg8MIDwoRtgQJSGlFKUaBVN6ANoFkdAed1JfICEH3V9lChoBmgJaA9DCK63zVSIyFZAlIaUUpRoFU3oA2gWR0B5689vCMxXdX2UKGgGaAloD0MIBp/m5EXbW0CUhpRSlGgVTegDaBZHQHoRm07bL2Z1fZQoaAZoCWgPQwg1tAHYgMBYQJSGlFKUaBVN6ANoFkdAehh7hvR7Z3V9lChoBmgJaA9DCKCJsOHpjllAlIaUUpRoFU3oA2gWR0B6e5Y3eenRdX2UKGgGaAloD0MIuVD51/L6TECUhpRSlGgVTegDaBZHQHp9PS+g13t1fZQoaAZoCWgPQwgi36XUJQ9TQJSGlFKUaBVN6ANoFkdAepU/wAlv63V9lChoBmgJaA9DCIVE2safzlZAlIaUUpRoFU3oA2gWR0B6vtTefqX4dX2UKGgGaAloD0MIyxEykGdLOECUhpRSlGgVTQABaBZHQHrCeGj9GZx1fZQoaAZoCWgPQwijHqLRHc9ZQJSGlFKUaBVN6ANoFkdAesNWo3rD63V9lChoBmgJaA9DCD9UGjGzWl1AlIaUUpRoFU3oA2gWR0B639f9gnc+dX2UKGgGaAloD0MIIXam0HnxV0CUhpRSlGgVTegDaBZHQHrgprk8zRB1fZQoaAZoCWgPQwg/NzRlpyVkQJSGlFKUaBVN6ANoFkdAeuIdwvQF93V9lChoBmgJaA9DCIHMzqJ3I2JAlIaUUpRoFU3oA2gWR0B65rizcAR1dX2UKGgGaAloD0MILhud81OkKECUhpRSlGgVS9toFkdAeveL3bmEG3V9lChoBmgJaA9DCN1FmKJc3lZAlIaUUpRoFU3oA2gWR0B6+6wpvxYrdX2UKGgGaAloD0MIv/BKkucnYECUhpRSlGgVTegDaBZHQHr9bqMWGh51fZQoaAZoCWgPQwjIs8u3PspfQJSGlFKUaBVN6ANoFkdAex68e0XxfHV9lChoBmgJaA9DCEYnS633uV5AlIaUUpRoFU3oA2gWR0B7JdJI1+AmdX2UKGgGaAloD0MIweWxZmShYUCUhpRSlGgVTegDaBZHQHsyxuTA31l1fZQoaAZoCWgPQwjeyDzyB/slQJSGlFKUaBVL/mgWR0B7MocrAgxKdX2UKGgGaAloD0MIZQCo4saNKMCUhpRSlGgVTS0BaBZHQHtB44Qz1sd1fZQoaAZoCWgPQwiV10roLu5SQJSGlFKUaBVN6ANoFkdAe1U+vyLAHnV9lChoBmgJaA9DCBTQRNjwoWFAlIaUUpRoFU3oA2gWR0B7WynxaxHHdX2UKGgGaAloD0MI8Ps3L05sPUCUhpRSlGgVTQ4BaBZHQHtnbu2JBPd1fZQoaAZoCWgPQwjONjemJwg1QJSGlFKUaBVL8GgWR0B7baUdJaq0dX2UKGgGaAloD0MIo3TpX5LK0D+UhpRSlGgVTUkBaBZHQHtunzg/C691fZQoaAZoCWgPQwj0wTI2dLc0QJSGlFKUaBVN6ANoFkdAe7ofWtlqanV9lChoBmgJaA9DCPkwe9l2AlxAlIaUUpRoFU3oA2gWR0B70L20zCUHdX2UKGgGaAloD0MIoik7/aDTVECUhpRSlGgVTegDaBZHQHv7Q0oBq9J1fZQoaAZoCWgPQwimKm1xjYheQJSGlFKUaBVN6ANoFkdAe//r2g398HV9lChoBmgJaA9DCFZ/hGHAwVpAlIaUUpRoFU3oA2gWR0B8IIC2c8T0dX2UKGgGaAloD0MI1CtlGeJkXkCUhpRSlGgVTegDaBZHQHwhZi/fwZx1fZQoaAZoCWgPQwjzyvW2mQ9XQJSGlFKUaBVN6ANoFkdAfCLx7RfF73V9lChoBmgJaA9DCHy0OGOYEllAlIaUUpRoFU3oA2gWR0B8J9vrGBFvdX2UKGgGaAloD0MIQZyHE5hEU0CUhpRSlGgVTegDaBZHQHw/6q4pc5d1fZQoaAZoCWgPQwjMme0K/XhjQJSGlFKUaBVN6ANoFkdAfHr1LrX18XV9lChoBmgJaA9DCNR8lXzso1hAlIaUUpRoFU3oA2gWR0B8jWhufmLcdX2UKGgGaAloD0MIKsk6HN08YECUhpRSlGgVTegDaBZHQHyiwSzw+dN1fZQoaAZoCWgPQwgGaFvNOjJSQJSGlFKUaBVN6ANoFkdAfKlGT9sJpnV9lChoBmgJaA9DCHPYfcfwXFZAlIaUUpRoFU3oA2gWR0B8ttNCZ4OddX2UKGgGaAloD0MIZttpa0Qw47+UhpRSlGgVS99oFkdAfLi7Wd3B6HV9lChoBmgJaA9DCG5MT1jiL0tAlIaUUpRoFU3oA2gWR0B8vQ0Ltu1ndX2UKGgGaAloD0MInfNTHAc3V0CUhpRSlGgVTegDaBZHQHy+D987ZFp1fZQoaAZoCWgPQwiqC3iZ4W1iQJSGlFKUaBVN6ANoFkdAfMHO9WZJCnV9lChoBmgJaA9DCHkGDf0T+kFAlIaUUpRoFU3oA2gWR0B9G7HU+cH4dX2UKGgGaAloD0MI0QZgAyLuYUCUhpRSlGgVTegDaBZHQH0+O2y9mHx1fZQoaAZoCWgPQwj7rDJT2hRhQJSGlFKUaBVN6ANoFkdAfUJV5rxiG3V9lChoBmgJaA9DCKlorP2dCV5AlIaUUpRoFU3YA2gWR0B9W3RtxdY5dX2UKGgGaAloD0MIjXqIRndGRECUhpRSlGgVTegDaBZHQH1e6Ln9vTB1fZQoaAZoCWgPQwh/2xMkts5cQJSGlFKUaBVN6ANoFkdAfWE9ycTakHV9lChoBmgJaA9DCFSnA1lP9FFAlIaUUpRoFU3oA2gWR0B9ZdI4EOiGdX2UKGgGaAloD0MIVTNrKaCXYECUhpRSlGgVTegDaBZHQH19mGVRk3F1fZQoaAZoCWgPQwjcRgN4C+5YQJSGlFKUaBVN6ANoFkdAfdD5Rjz7M3V9lChoBmgJaA9DCN9Szhf772JAlIaUUpRoFU3oA2gWR0B96GjynUDudX2UKGgGaAloD0MIy73ArFCqUUCUhpRSlGgVTegDaBZHQH3vP/m1YyR1fZQoaAZoCWgPQwj7sUl+ROhhQJSGlFKUaBVN6ANoFkdAff0l67dzn3V9lChoBmgJaA9DCC9pjNbRg2FAlIaUUpRoFU3oA2gWR0B9/vmV7hNudX2UKGgGaAloD0MIxCEbSBcVVkCUhpRSlGgVTegDaBZHQH4Der2g3991fZQoaAZoCWgPQwhblq/L8KJeQJSGlFKUaBVN6ANoFkdAfgRxVAAyVXV9lChoBmgJaA9DCHy0OGOYzlJAlIaUUpRoFU3oA2gWR0B+COgmJFb3dX2UKGgGaAloD0MIeH+8Vy0jYECUhpRSlGgVTegDaBZHQH5l0KZ2IO91fZQoaAZoCWgPQwjrdCDrqd9bQJSGlFKUaBVN6ANoFkdAfomm5DqnnHV9lChoBmgJaA9DCKLxRBDnpWBAlIaUUpRoFU3oA2gWR0B+jabKA8SxdX2UKGgGaAloD0MIWwhyUMLwTsCUhpRSlGgVTS8BaBZHQH6Wz5O8Cgd1fZQoaAZoCWgPQwiHwJFAgyNhQJSGlFKUaBVN6ANoFkdAfqXRGtp22XV9lChoBmgJaA9DCKvrUE1JNmBAlIaUUpRoFU3oA2gWR0B+qN/J/5LzdX2UKGgGaAloD0MIUFWhgVjJXkCUhpRSlGgVTegDaBZHQH6q5+6RQrN1fZQoaAZoCWgPQwioiqn0E/tcQJSGlFKUaBVN6ANoFkdAfq8wW3z+WHV9lChoBmgJaA9DCN8WLNUFZl1AlIaUUpRoFU3oA2gWR0B+xONHYpUhdX2UKGgGaAloD0MIsdtnlZk9XECUhpRSlGgVTegDaBZHQH8Vtxp+MIh1fZQoaAZoCWgPQwh5zas6q5dlQJSGlFKUaBVN6ANoFkdAfy1sLfDUE3V9lChoBmgJaA9DCDCBW3fzEmVAlIaUUpRoFU3oA2gWR0B/NL7hvR7adX2UKGgGaAloD0MIJm2q7pFBYUCUhpRSlGgVTegDaBZHQH9Dplar3kB1fZQoaAZoCWgPQwgSvCGNCutXQJSGlFKUaBVN6ANoFkdAf0Wx8lXzUnV9lChoBmgJaA9DCC/h0Fs8Y1ZAlIaUUpRoFU3oA2gWR0B/SkyYXwb3dX2UKGgGaAloD0MIw7zHmaYEZECUhpRSlGgVTegDaBZHQH9LTTfBN211fZQoaAZoCWgPQwgn2epySnVkQJSGlFKUaBVN6ANoFkdAf60ZvUBnz3V9lChoBmgJaA9DCEZ4exACZjdAlIaUUpRoFU3oA2gWR0B/1StRvWH2dX2UKGgGaAloD0MIQj7o2ay4VECUhpRSlGgVTegDaBZHQH/ZoE0SAYp1fZQoaAZoCWgPQwiKHCJuTqteQJSGlFKUaBVN6ANoFkdAf+P4nWrfcnV9lChoBmgJaA9DCLMHWoEh2VRAlIaUUpRoFU3oA2gWR0B/9evV3EAHdX2UKGgGaAloD0MIvFtZorNgYUCUhpRSlGgVTegDaBZHQH/5cMd92HN1fZQoaAZoCWgPQwgFpz6QPKViQJSGlFKUaBVN6ANoFkdAf/u7aIvalHV9lChoBmgJaA9DCEmCcAUUJVtAlIaUUpRoFU3oA2gWR0CAABd43WFwdX2UKGgGaAloD0MIe0ljtI7LXUCUhpRSlGgVTegDaBZHQIALGPRzBAR1fZQoaAZoCWgPQwh7EALyJblZQJSGlFKUaBVN6ANoFkdAgDJlLOAy23V9lChoBmgJaA9DCLDjv0AQDlxAlIaUUpRoFU3oA2gWR0CAPaP8yeqadX2UKGgGaAloD0MIdJXurrNXWkCUhpRSlGgVTegDaBZHQIBA/gFX7tR1fZQoaAZoCWgPQwiqZtZSQDlhQJSGlFKUaBVN6ANoFkdAgEeuVX3g1nV9lChoBmgJaA9DCDuPiv+7cWNAlIaUUpRoFU3oA2gWR0CASJsrNGExdX2UKGgGaAloD0MI24e85eqVX0CUhpRSlGgVTegDaBZHQIBKzOLR8dB1fZQoaAZoCWgPQwjEBgsnaa9ZQJSGlFKUaBVN6ANoFkdAgEs/2bobGXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff8590e7280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff8590e7310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff8590e73a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff8590e7430>", "_build": "<function ActorCriticPolicy._build at 0x7ff8590e74c0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff8590e7550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff8590e75e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff8590e7670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff8590e7700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff8590e7790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff8590e7820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff8590e9090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671654203347089694, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr5lDpxhke7H9+/u1LijTyT4YQ8TjR0vQAAgD8AAIA/mk/pvOA9Fj+fBQ69KjnHvgDlGL3y66y7AAAAAAAAAABzNSi+DMz7PmsZaj3wSIa+OoqovcYBuz0AAAAAAAAAAKAjcz6XkFs/EI9QPSBSsL4q+Us+8BZdvQAAAAAAAAAA1i5NvkogWz/bNv89CXatvlkEO70KjkU+AAAAAAAAAACagJs9u/+vP+bZ1z5d1Ye+cTKmPUJ0Vj4AAAAAAAAAAGbO9rvZ2aI/8s89vZ1B+74qDWS8ZKSrPAAAAAAAAAAAQG8qvhTYYj+B6Ci+DIXbvofFOb7/dbQ9AAAAAAAAAADNpNU7FKSZus8ILDr28dC4d66kOgBHO7kAAIA/AACAP5p43rwpTBy6JiTNuu8hRTl8ewa7O3MyOQAAgD8AAIA/JlSivag8ND8WVgK9ETi1vnSFP71Dp1W9AAAAAAAAAADmJWs9O8zqPSVOvrws/Ru+sq3kvEX7cDsAAAAAAAAAAEBu5L1xyZM/+Ji6vcXt074P3wa+A2hSPQAAAAAAAAAAzTsOvbaihD8IgLm9taPZvh72tb1J7ya9AAAAAAAAAABAX+E9y5j+Pl8Kh70DjJ2+Fw7KvRBu7LwAAAAAAAAAAGYq1DuSbbQ/JuMnPwCCcb33n/W7uB0YvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFceBVwvwckCUhpRSlIwBbJRNXgGMAXSUR0CYWICXhOxjdX2UKGgGaAloD0MIwr6dRMQHcUCUhpRSlGgVTW4BaBZHQJh1GozeoDR1fZQoaAZoCWgPQwimRuhnasJxQJSGlFKUaBVNRwFoFkdAmHVmSIP9UHV9lChoBmgJaA9DCAXEJFzIIXFAlIaUUpRoFU0IAWgWR0CYdYI0qH45dX2UKGgGaAloD0MIyNEcWXngbUCUhpRSlGgVTVYBaBZHQJh1tyGSIP91fZQoaAZoCWgPQwgSvvc3KPhyQJSGlFKUaBVNOwJoFkdAmHZcQI2OyXV9lChoBmgJaA9DCCxIMxbNHXFAlIaUUpRoFUv/aBZHQJh2i0CzTnd1fZQoaAZoCWgPQwiqukc213dvQJSGlFKUaBVNJAFoFkdAmHahxT850nV9lChoBmgJaA9DCOG2tvC8VW5AlIaUUpRoFU0vAWgWR0CYdqFL39JjdX2UKGgGaAloD0MIdAmH3iJ9cUCUhpRSlGgVTeMDaBZHQJh4CydFvyd1fZQoaAZoCWgPQwifOlYpfdtxQJSGlFKUaBVNeAFoFkdAmHhEALiMpHV9lChoBmgJaA9DCDZc5J7uA3JAlIaUUpRoFU0bAWgWR0CYeHmNR3vAdX2UKGgGaAloD0MIR+S7lLqFcUCUhpRSlGgVTY0BaBZHQJh5q1NQCS11fZQoaAZoCWgPQwhBRkCFI0BsQJSGlFKUaBVNPgFoFkdAmHoWipNsWXV9lChoBmgJaA9DCM3K9iEvOnFAlIaUUpRoFU0UAmgWR0CYewZntfG/dX2UKGgGaAloD0MIDk+vlGWvVUCUhpRSlGgVS+loFkdAmH8WKAJ9iXV9lChoBmgJaA9DCJ3Ul6Wdpm9AlIaUUpRoFU0XAWgWR0CYgB6xgRbsdX2UKGgGaAloD0MI51Hxf0fRb0CUhpRSlGgVTSYBaBZHQJiCJAE+xGF1fZQoaAZoCWgPQwjdYKjDClNwQJSGlFKUaBVNWgFoFkdAmINBVZLZjHV9lChoBmgJaA9DCGx2pPrOyG9AlIaUUpRoFUv5aBZHQJiEAfozN2V1fZQoaAZoCWgPQwh6qdiYlx1wQJSGlFKUaBVNMwFoFkdAmISmMn7YTXV9lChoBmgJaA9DCNU9srmqu3BAlIaUUpRoFU1gAWgWR0CYhRa5f+judX2UKGgGaAloD0MI2V92T16WcUCUhpRSlGgVTTUBaBZHQJiFUxWT5ft1fZQoaAZoCWgPQwgiOZm41QlzQJSGlFKUaBVNlgFoFkdAmIaxZlnRLXV9lChoBmgJaA9DCCQPRBYpM3FAlIaUUpRoFU0xAWgWR0CYhzc6/7BPdX2UKGgGaAloD0MIxy3m58bKcECUhpRSlGgVTTYBaBZHQJiIlS619fF1fZQoaAZoCWgPQwhwXwfO2VFyQJSGlFKUaBVNlQFoFkdAmIkqnaWX1XV9lChoBmgJaA9DCGISLuSRE2dAlIaUUpRoFU3oA2gWR0CYicNJvo/zdX2UKGgGaAloD0MICqAYWTKnVECUhpRSlGgVS9toFkdAmIzve1rqMXV9lChoBmgJaA9DCL/S+fAs20tAlIaUUpRoFUvRaBZHQJiNZCCz1K51fZQoaAZoCWgPQwiFsYUgh09yQJSGlFKUaBVL6WgWR0CYjgV4oqkNdX2UKGgGaAloD0MIJVtdTomwcECUhpRSlGgVTWwBaBZHQJiO0DGLk0d1fZQoaAZoCWgPQwh3TrNAO+pmQJSGlFKUaBVN6ANoFkdAmI+zPrv9cnV9lChoBmgJaA9DCDYDXJBtEHJAlIaUUpRoFU1PAWgWR0CYkRHvttygdX2UKGgGaAloD0MIh1ClZg8KcUCUhpRSlGgVTW4BaBZHQJiRduWKMvR1fZQoaAZoCWgPQwjryJHOgDxwQJSGlFKUaBVNQAFoFkdAmJQCJO32EnV9lChoBmgJaA9DCJj4o6jzGXJAlIaUUpRoFU0iAWgWR0CYlZtxMnJDdX2UKGgGaAloD0MIO/vKg3QZcUCUhpRSlGgVTTQBaBZHQJiVta7mMfl1fZQoaAZoCWgPQwhgyOpWD3twQJSGlFKUaBVNSwFoFkdAmJYTbnHNo3V9lChoBmgJaA9DCNY2xeNibHFAlIaUUpRoFU0GAmgWR0CYlnQbdadMdX2UKGgGaAloD0MIHVvPEI6CbkCUhpRSlGgVTQcBaBZHQJiYpltj0+V1fZQoaAZoCWgPQwhFD3wMVhttQJSGlFKUaBVNHQFoFkdAmJkaU7jkuHV9lChoBmgJaA9DCCJxj6WPanJAlIaUUpRoFU3GA2gWR0CYn5vQnhKldX2UKGgGaAloD0MIza/mAIFHcUCUhpRSlGgVTTUBaBZHQJig0QYk3S91fZQoaAZoCWgPQwjxDvCkBfNmQJSGlFKUaBVN6ANoFkdAmLn0ornTzHV9lChoBmgJaA9DCPQ2NjtSim9AlIaUUpRoFU2RAWgWR0CYug4QBgeBdX2UKGgGaAloD0MIb9dLU4R3bUCUhpRSlGgVS/hoFkdAmLq83VCoj3V9lChoBmgJaA9DCCpwsg3cHHJAlIaUUpRoFU22AWgWR0CYut61LJ0XdX2UKGgGaAloD0MIE2IuqZoUcECUhpRSlGgVTXUCaBZHQJi69ghKUV11fZQoaAZoCWgPQwjfp6rQQCVwQJSGlFKUaBVNLwFoFkdAmLsrxiG34XV9lChoBmgJaA9DCCZV201wbm5AlIaUUpRoFU0tAWgWR0CYvGD9fkWAdX2UKGgGaAloD0MIFqJD4MgrckCUhpRSlGgVTQ4BaBZHQJi9zOX3QD51fZQoaAZoCWgPQwjoiHyXEjtxQJSGlFKUaBVNWwFoFkdAmL4EWdmQKnV9lChoBmgJaA9DCKzKviuCiXBAlIaUUpRoFU3uAWgWR0CYvmYnfEXMdX2UKGgGaAloD0MIv9cQHJe/cECUhpRSlGgVTVsBaBZHQJi+nJwKjSJ1fZQoaAZoCWgPQwiS5o9p7dpxQJSGlFKUaBVN5wFoFkdAmL9m2w3YMHV9lChoBmgJaA9DCHJqZ5gaIXFAlIaUUpRoFU1UAWgWR0CYwDHMEA5rdX2UKGgGaAloD0MIg9pv7cSKc0CUhpRSlGgVTQEBaBZHQJjA86hg3Lp1fZQoaAZoCWgPQwh/3H75JBdyQJSGlFKUaBVNCAFoFkdAmMGtyYG+snV9lChoBmgJaA9DCJ9VZkprJ21AlIaUUpRoFU0aAWgWR0CYw4IiTt9hdX2UKGgGaAloD0MI2sh1U8p3TkCUhpRSlGgVS8toFkdAmMQ6ZtvXLHV9lChoBmgJaA9DCEt4Qq8/ZHBAlIaUUpRoFU0eAWgWR0CYxFdwNsnBdX2UKGgGaAloD0MIkgiNYONgcECUhpRSlGgVTSABaBZHQJjEgCfYjB51fZQoaAZoCWgPQwgeh8H8FV1vQJSGlFKUaBVNJQFoFkdAmMSBzJZGKHV9lChoBmgJaA9DCJp3nKKjpm1AlIaUUpRoFU0eAWgWR0CYxKEcsDnvdX2UKGgGaAloD0MI+yR32MSwYUCUhpRSlGgVTegDaBZHQJjGLCUHIIZ1fZQoaAZoCWgPQwjZ6Jyfot9wQJSGlFKUaBVNSAFoFkdAmMcjWXkYGnV9lChoBmgJaA9DCAYujzUjv0BAlIaUUpRoFUv7aBZHQJjHn9pAUtZ1fZQoaAZoCWgPQwjaVrPOuFVyQJSGlFKUaBVNoAFoFkdAmMgJjlPrOnV9lChoBmgJaA9DCKysbYqHKnFAlIaUUpRoFU1EAWgWR0CYyIoEjgQ6dX2UKGgGaAloD0MIPWGJBxQmb0CUhpRSlGgVTRIBaBZHQJjJXZYgaFV1fZQoaAZoCWgPQwh1IVZ/BEBvQJSGlFKUaBVNUwFoFkdAmMlu5jH4oXV9lChoBmgJaA9DCLvUCP2MpHBAlIaUUpRoFU1ZAWgWR0CYydDUExIrdX2UKGgGaAloD0MI21IHeX1EcUCUhpRSlGgVTTIBaBZHQJjL2XqqwQl1fZQoaAZoCWgPQwjt1Fxu8IdwQJSGlFKUaBVNYwFoFkdAmMzHpjc2znV9lChoBmgJaA9DCK358ZeW03FAlIaUUpRoFU0vAWgWR0CYzbTQmeDndX2UKGgGaAloD0MInnk57D7acECUhpRSlGgVTSoBaBZHQJjOdS3solV1fZQoaAZoCWgPQwi6g9iZQvtwQJSGlFKUaBVNKQFoFkdAmM6QY1pCbHV9lChoBmgJaA9DCFbXoZrSg3BAlIaUUpRoFU0JAWgWR0CYzzB7u2JBdX2UKGgGaAloD0MIMQdBR6uvcECUhpRSlGgVTUEBaBZHQJjPT5mAbyZ1fZQoaAZoCWgPQwgQXOUJhAlvQJSGlFKUaBVNZQFoFkdAmNBI2sJY1nV9lChoBmgJaA9DCM0DWORXSnBAlIaUUpRoFU0tAWgWR0CY0W0pVjqfdX2UKGgGaAloD0MITZ8dcF36cECUhpRSlGgVTSsBaBZHQJjSUUfxMFl1fZQoaAZoCWgPQwi6aTNOg2NyQJSGlFKUaBVNBwFoFkdAmNJ+rZJ04nV9lChoBmgJaA9DCCEDeXY51HJAlIaUUpRoFU07AWgWR0CY02XYlIEsdX2UKGgGaAloD0MI4PdvXpzocUCUhpRSlGgVTR0BaBZHQJjTuWyC4Bp1fZQoaAZoCWgPQwh+Uu3TsaRwQJSGlFKUaBVNLwFoFkdAmNPR/qgRLHV9lChoBmgJaA9DCImyt5Rz1nJAlIaUUpRoFU35AWgWR0CY1ZbTtsvadX2UKGgGaAloD0MI7IfYYCHKcECUhpRSlGgVTT0BaBZHQJjYWbKA8Sx1fZQoaAZoCWgPQwgSUOEI0p5zQJSGlFKUaBVNHAFoFkdAmNkmZJCjUXV9lChoBmgJaA9DCG+5+rFJJ3FAlIaUUpRoFU1HAWgWR0CY2gX9R77bdX2UKGgGaAloD0MI5BHcSJk1cUCUhpRSlGgVTSYBaBZHQJjaf8DSw4d1fZQoaAZoCWgPQwi3m+Cbpt5wQJSGlFKUaBVNFgJoFkdAmNsQV0tAcHV9lChoBmgJaA9DCP9cNGQ8b3FAlIaUUpRoFU0dAWgWR0CY21jL0SRKdX2UKGgGaAloD0MI6Ugu/+GucUCUhpRSlGgVTaUBaBZHQJjbzvDxb0R1fZQoaAZoCWgPQwiO5zOgXrlxQJSGlFKUaBVNXgFoFkdAmNva2F36h3V9lChoBmgJaA9DCLYtymyQYm9AlIaUUpRoFU0dAWgWR0CY3H1kUbkwdX2UKGgGaAloD0MIpbvrbEiHbkCUhpRSlGgVTRoBaBZHQJjdQPNFBpp1fZQoaAZoCWgPQwjOUx1ys0RxQJSGlFKUaBVNGAFoFkdAmN1brTpgTnV9lChoBmgJaA9DCF8pyxDHuHFAlIaUUpRoFU2AAWgWR0CY3b9qk/KRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db2bb94300759b80557fdcda1b433a13459ded96e960781824c0d1b0c4531b52
3
+ size 147206
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff8590e7280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff8590e7310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff8590e73a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff8590e7430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff8590e74c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff8590e7550>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff8590e75e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff8590e7670>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff8590e7700>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff8590e7790>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff8590e7820>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff8590e9090>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671654203347089694,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr5lDpxhke7H9+/u1LijTyT4YQ8TjR0vQAAgD8AAIA/mk/pvOA9Fj+fBQ69KjnHvgDlGL3y66y7AAAAAAAAAABzNSi+DMz7PmsZaj3wSIa+OoqovcYBuz0AAAAAAAAAAKAjcz6XkFs/EI9QPSBSsL4q+Us+8BZdvQAAAAAAAAAA1i5NvkogWz/bNv89CXatvlkEO70KjkU+AAAAAAAAAACagJs9u/+vP+bZ1z5d1Ye+cTKmPUJ0Vj4AAAAAAAAAAGbO9rvZ2aI/8s89vZ1B+74qDWS8ZKSrPAAAAAAAAAAAQG8qvhTYYj+B6Ci+DIXbvofFOb7/dbQ9AAAAAAAAAADNpNU7FKSZus8ILDr28dC4d66kOgBHO7kAAIA/AACAP5p43rwpTBy6JiTNuu8hRTl8ewa7O3MyOQAAgD8AAIA/JlSivag8ND8WVgK9ETi1vnSFP71Dp1W9AAAAAAAAAADmJWs9O8zqPSVOvrws/Ru+sq3kvEX7cDsAAAAAAAAAAEBu5L1xyZM/+Ji6vcXt074P3wa+A2hSPQAAAAAAAAAAzTsOvbaihD8IgLm9taPZvh72tb1J7ya9AAAAAAAAAABAX+E9y5j+Pl8Kh70DjJ2+Fw7KvRBu7LwAAAAAAAAAAGYq1DuSbbQ/JuMnPwCCcb33n/W7uB0YvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFceBVwvwckCUhpRSlIwBbJRNXgGMAXSUR0CYWICXhOxjdX2UKGgGaAloD0MIwr6dRMQHcUCUhpRSlGgVTW4BaBZHQJh1GozeoDR1fZQoaAZoCWgPQwimRuhnasJxQJSGlFKUaBVNRwFoFkdAmHVmSIP9UHV9lChoBmgJaA9DCAXEJFzIIXFAlIaUUpRoFU0IAWgWR0CYdYI0qH45dX2UKGgGaAloD0MIyNEcWXngbUCUhpRSlGgVTVYBaBZHQJh1tyGSIP91fZQoaAZoCWgPQwgSvvc3KPhyQJSGlFKUaBVNOwJoFkdAmHZcQI2OyXV9lChoBmgJaA9DCCxIMxbNHXFAlIaUUpRoFUv/aBZHQJh2i0CzTnd1fZQoaAZoCWgPQwiqukc213dvQJSGlFKUaBVNJAFoFkdAmHahxT850nV9lChoBmgJaA9DCOG2tvC8VW5AlIaUUpRoFU0vAWgWR0CYdqFL39JjdX2UKGgGaAloD0MIdAmH3iJ9cUCUhpRSlGgVTeMDaBZHQJh4CydFvyd1fZQoaAZoCWgPQwifOlYpfdtxQJSGlFKUaBVNeAFoFkdAmHhEALiMpHV9lChoBmgJaA9DCDZc5J7uA3JAlIaUUpRoFU0bAWgWR0CYeHmNR3vAdX2UKGgGaAloD0MIR+S7lLqFcUCUhpRSlGgVTY0BaBZHQJh5q1NQCS11fZQoaAZoCWgPQwhBRkCFI0BsQJSGlFKUaBVNPgFoFkdAmHoWipNsWXV9lChoBmgJaA9DCM3K9iEvOnFAlIaUUpRoFU0UAmgWR0CYewZntfG/dX2UKGgGaAloD0MIDk+vlGWvVUCUhpRSlGgVS+loFkdAmH8WKAJ9iXV9lChoBmgJaA9DCJ3Ul6Wdpm9AlIaUUpRoFU0XAWgWR0CYgB6xgRbsdX2UKGgGaAloD0MI51Hxf0fRb0CUhpRSlGgVTSYBaBZHQJiCJAE+xGF1fZQoaAZoCWgPQwjdYKjDClNwQJSGlFKUaBVNWgFoFkdAmINBVZLZjHV9lChoBmgJaA9DCGx2pPrOyG9AlIaUUpRoFUv5aBZHQJiEAfozN2V1fZQoaAZoCWgPQwh6qdiYlx1wQJSGlFKUaBVNMwFoFkdAmISmMn7YTXV9lChoBmgJaA9DCNU9srmqu3BAlIaUUpRoFU1gAWgWR0CYhRa5f+judX2UKGgGaAloD0MI2V92T16WcUCUhpRSlGgVTTUBaBZHQJiFUxWT5ft1fZQoaAZoCWgPQwgiOZm41QlzQJSGlFKUaBVNlgFoFkdAmIaxZlnRLXV9lChoBmgJaA9DCCQPRBYpM3FAlIaUUpRoFU0xAWgWR0CYhzc6/7BPdX2UKGgGaAloD0MIxy3m58bKcECUhpRSlGgVTTYBaBZHQJiIlS619fF1fZQoaAZoCWgPQwhwXwfO2VFyQJSGlFKUaBVNlQFoFkdAmIkqnaWX1XV9lChoBmgJaA9DCGISLuSRE2dAlIaUUpRoFU3oA2gWR0CYicNJvo/zdX2UKGgGaAloD0MICqAYWTKnVECUhpRSlGgVS9toFkdAmIzve1rqMXV9lChoBmgJaA9DCL/S+fAs20tAlIaUUpRoFUvRaBZHQJiNZCCz1K51fZQoaAZoCWgPQwiFsYUgh09yQJSGlFKUaBVL6WgWR0CYjgV4oqkNdX2UKGgGaAloD0MIJVtdTomwcECUhpRSlGgVTWwBaBZHQJiO0DGLk0d1fZQoaAZoCWgPQwh3TrNAO+pmQJSGlFKUaBVN6ANoFkdAmI+zPrv9cnV9lChoBmgJaA9DCDYDXJBtEHJAlIaUUpRoFU1PAWgWR0CYkRHvttygdX2UKGgGaAloD0MIh1ClZg8KcUCUhpRSlGgVTW4BaBZHQJiRduWKMvR1fZQoaAZoCWgPQwjryJHOgDxwQJSGlFKUaBVNQAFoFkdAmJQCJO32EnV9lChoBmgJaA9DCJj4o6jzGXJAlIaUUpRoFU0iAWgWR0CYlZtxMnJDdX2UKGgGaAloD0MIO/vKg3QZcUCUhpRSlGgVTTQBaBZHQJiVta7mMfl1fZQoaAZoCWgPQwhgyOpWD3twQJSGlFKUaBVNSwFoFkdAmJYTbnHNo3V9lChoBmgJaA9DCNY2xeNibHFAlIaUUpRoFU0GAmgWR0CYlnQbdadMdX2UKGgGaAloD0MIHVvPEI6CbkCUhpRSlGgVTQcBaBZHQJiYpltj0+V1fZQoaAZoCWgPQwhFD3wMVhttQJSGlFKUaBVNHQFoFkdAmJkaU7jkuHV9lChoBmgJaA9DCCJxj6WPanJAlIaUUpRoFU3GA2gWR0CYn5vQnhKldX2UKGgGaAloD0MIza/mAIFHcUCUhpRSlGgVTTUBaBZHQJig0QYk3S91fZQoaAZoCWgPQwjxDvCkBfNmQJSGlFKUaBVN6ANoFkdAmLn0ornTzHV9lChoBmgJaA9DCPQ2NjtSim9AlIaUUpRoFU2RAWgWR0CYug4QBgeBdX2UKGgGaAloD0MIb9dLU4R3bUCUhpRSlGgVS/hoFkdAmLq83VCoj3V9lChoBmgJaA9DCCpwsg3cHHJAlIaUUpRoFU22AWgWR0CYut61LJ0XdX2UKGgGaAloD0MIE2IuqZoUcECUhpRSlGgVTXUCaBZHQJi69ghKUV11fZQoaAZoCWgPQwjfp6rQQCVwQJSGlFKUaBVNLwFoFkdAmLsrxiG34XV9lChoBmgJaA9DCCZV201wbm5AlIaUUpRoFU0tAWgWR0CYvGD9fkWAdX2UKGgGaAloD0MIFqJD4MgrckCUhpRSlGgVTQ4BaBZHQJi9zOX3QD51fZQoaAZoCWgPQwjoiHyXEjtxQJSGlFKUaBVNWwFoFkdAmL4EWdmQKnV9lChoBmgJaA9DCKzKviuCiXBAlIaUUpRoFU3uAWgWR0CYvmYnfEXMdX2UKGgGaAloD0MIv9cQHJe/cECUhpRSlGgVTVsBaBZHQJi+nJwKjSJ1fZQoaAZoCWgPQwiS5o9p7dpxQJSGlFKUaBVN5wFoFkdAmL9m2w3YMHV9lChoBmgJaA9DCHJqZ5gaIXFAlIaUUpRoFU1UAWgWR0CYwDHMEA5rdX2UKGgGaAloD0MIg9pv7cSKc0CUhpRSlGgVTQEBaBZHQJjA86hg3Lp1fZQoaAZoCWgPQwh/3H75JBdyQJSGlFKUaBVNCAFoFkdAmMGtyYG+snV9lChoBmgJaA9DCJ9VZkprJ21AlIaUUpRoFU0aAWgWR0CYw4IiTt9hdX2UKGgGaAloD0MI2sh1U8p3TkCUhpRSlGgVS8toFkdAmMQ6ZtvXLHV9lChoBmgJaA9DCEt4Qq8/ZHBAlIaUUpRoFU0eAWgWR0CYxFdwNsnBdX2UKGgGaAloD0MIkgiNYONgcECUhpRSlGgVTSABaBZHQJjEgCfYjB51fZQoaAZoCWgPQwgeh8H8FV1vQJSGlFKUaBVNJQFoFkdAmMSBzJZGKHV9lChoBmgJaA9DCJp3nKKjpm1AlIaUUpRoFU0eAWgWR0CYxKEcsDnvdX2UKGgGaAloD0MI+yR32MSwYUCUhpRSlGgVTegDaBZHQJjGLCUHIIZ1fZQoaAZoCWgPQwjZ6Jyfot9wQJSGlFKUaBVNSAFoFkdAmMcjWXkYGnV9lChoBmgJaA9DCAYujzUjv0BAlIaUUpRoFUv7aBZHQJjHn9pAUtZ1fZQoaAZoCWgPQwjaVrPOuFVyQJSGlFKUaBVNoAFoFkdAmMgJjlPrOnV9lChoBmgJaA9DCKysbYqHKnFAlIaUUpRoFU1EAWgWR0CYyIoEjgQ6dX2UKGgGaAloD0MIPWGJBxQmb0CUhpRSlGgVTRIBaBZHQJjJXZYgaFV1fZQoaAZoCWgPQwh1IVZ/BEBvQJSGlFKUaBVNUwFoFkdAmMlu5jH4oXV9lChoBmgJaA9DCLvUCP2MpHBAlIaUUpRoFU1ZAWgWR0CYydDUExIrdX2UKGgGaAloD0MI21IHeX1EcUCUhpRSlGgVTTIBaBZHQJjL2XqqwQl1fZQoaAZoCWgPQwjt1Fxu8IdwQJSGlFKUaBVNYwFoFkdAmMzHpjc2znV9lChoBmgJaA9DCK358ZeW03FAlIaUUpRoFU0vAWgWR0CYzbTQmeDndX2UKGgGaAloD0MInnk57D7acECUhpRSlGgVTSoBaBZHQJjOdS3solV1fZQoaAZoCWgPQwi6g9iZQvtwQJSGlFKUaBVNKQFoFkdAmM6QY1pCbHV9lChoBmgJaA9DCFbXoZrSg3BAlIaUUpRoFU0JAWgWR0CYzzB7u2JBdX2UKGgGaAloD0MIMQdBR6uvcECUhpRSlGgVTUEBaBZHQJjPT5mAbyZ1fZQoaAZoCWgPQwgQXOUJhAlvQJSGlFKUaBVNZQFoFkdAmNBI2sJY1nV9lChoBmgJaA9DCM0DWORXSnBAlIaUUpRoFU0tAWgWR0CY0W0pVjqfdX2UKGgGaAloD0MITZ8dcF36cECUhpRSlGgVTSsBaBZHQJjSUUfxMFl1fZQoaAZoCWgPQwi6aTNOg2NyQJSGlFKUaBVNBwFoFkdAmNJ+rZJ04nV9lChoBmgJaA9DCCEDeXY51HJAlIaUUpRoFU07AWgWR0CY02XYlIEsdX2UKGgGaAloD0MI4PdvXpzocUCUhpRSlGgVTR0BaBZHQJjTuWyC4Bp1fZQoaAZoCWgPQwh+Uu3TsaRwQJSGlFKUaBVNLwFoFkdAmNPR/qgRLHV9lChoBmgJaA9DCImyt5Rz1nJAlIaUUpRoFU35AWgWR0CY1ZbTtsvadX2UKGgGaAloD0MI7IfYYCHKcECUhpRSlGgVTT0BaBZHQJjYWbKA8Sx1fZQoaAZoCWgPQwgSUOEI0p5zQJSGlFKUaBVNHAFoFkdAmNkmZJCjUXV9lChoBmgJaA9DCG+5+rFJJ3FAlIaUUpRoFU1HAWgWR0CY2gX9R77bdX2UKGgGaAloD0MI5BHcSJk1cUCUhpRSlGgVTSYBaBZHQJjaf8DSw4d1fZQoaAZoCWgPQwi3m+Cbpt5wQJSGlFKUaBVNFgJoFkdAmNsQV0tAcHV9lChoBmgJaA9DCP9cNGQ8b3FAlIaUUpRoFU0dAWgWR0CY21jL0SRKdX2UKGgGaAloD0MI6Ugu/+GucUCUhpRSlGgVTaUBaBZHQJjbzvDxb0R1fZQoaAZoCWgPQwiO5zOgXrlxQJSGlFKUaBVNXgFoFkdAmNva2F36h3V9lChoBmgJaA9DCLYtymyQYm9AlIaUUpRoFU0dAWgWR0CY3H1kUbkwdX2UKGgGaAloD0MIpbvrbEiHbkCUhpRSlGgVTRoBaBZHQJjdQPNFBpp1fZQoaAZoCWgPQwjOUx1ys0RxQJSGlFKUaBVNGAFoFkdAmN1brTpgTnV9lChoBmgJaA9DCF8pyxDHuHFAlIaUUpRoFU2AAWgWR0CY3b9qk/KRdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1740190ff4092a19e854e64246d6422162cf0182e2c764272e9b0acd7a127af
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:803de43fa3aca0ff14b85f9bfa3819fe856434f5d69851ba59b84eeb988c1961
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:37794686dcb08e358c7a1c85b739c74a5c48022c9dbcf3dd0d5c715daf114a2d
3
- size 256759
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:484feae5ab3795d9c69edede144f8b733c451d3089132460a0b6c5a208b79a72
3
+ size 204694
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 221.03970971791495, "std_reward": 18.996590385251572, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-26T16:47:59.242235"}
 
1
+ {"mean_reward": 262.1387997498223, "std_reward": 16.008003102084, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T20:47:09.844521"}