Adi-0-0-Gupta commited on
Commit
971e79b
1 Parent(s): fb3e349

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,859 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets: []
3
+ language: []
4
+ library_name: sentence-transformers
5
+ metrics:
6
+ - cosine_accuracy@1
7
+ - cosine_accuracy@3
8
+ - cosine_accuracy@5
9
+ - cosine_accuracy@10
10
+ - cosine_precision@1
11
+ - cosine_precision@3
12
+ - cosine_precision@5
13
+ - cosine_precision@10
14
+ - cosine_recall@1
15
+ - cosine_recall@3
16
+ - cosine_recall@5
17
+ - cosine_recall@10
18
+ - cosine_ndcg@10
19
+ - cosine_mrr@10
20
+ - cosine_map@100
21
+ pipeline_tag: sentence-similarity
22
+ tags:
23
+ - sentence-transformers
24
+ - sentence-similarity
25
+ - feature-extraction
26
+ - generated_from_trainer
27
+ - dataset_size:42333
28
+ - loss:MatryoshkaLoss
29
+ - loss:MultipleNegativesRankingLoss
30
+ widget:
31
+ - source_sentence: 'Tag: chicken & broccoli alfredo
32
+
33
+
34
+ For chicken & broccoli alfredo, these dietary tags go well with it: dinner, italian
35
+ cuisine, meat recipes, lunch, italian american cuisine, american cuisine, pasta
36
+ recipes, contains dairy, european cuisine, vegetarian'
37
+ sentences:
38
+ - 'Tag: chicken & broccoli alfredo
39
+
40
+
41
+ What dietary classifications are suitable for chicken & broccoli alfredo?'
42
+ - 'Tag: vegan pad thai
43
+
44
+
45
+ What dietary labels fit vegan pad thai?'
46
+ - 'Tag: apple pie filling
47
+
48
+
49
+ Which dietary tags apply to apple pie filling?'
50
+ - source_sentence: 'Tag: beef and broccoli
51
+
52
+
53
+ A small description of beef and broccoli: Stir fried broccoli and tender beef
54
+ strips stir-fried in a rich savory sauce.'
55
+ sentences:
56
+ - 'Tag: chicken lettuce wrap
57
+
58
+
59
+ What are the principal macro ingredients of chicken lettuce wrap?'
60
+ - 'Tag: teriyaki tofu
61
+
62
+
63
+ What are the micro ingredients used in teriyaki tofu?'
64
+ - 'Tag: beef and broccoli
65
+
66
+
67
+ What’s the best way to describe beef and broccoli?'
68
+ - source_sentence: 'Tag: scrambled eggs with veggies
69
+
70
+
71
+ For scrambled eggs with veggies, these dietary tags go well with it: breakfast,
72
+ american cuisine, protein rich recipes, stir fry recipes, gluten free recipes'
73
+ sentences:
74
+ - 'Tag: kimchi fried rice (chicken)
75
+
76
+
77
+ What are the vital macro ingredients in kimchi fried rice (chicken)?'
78
+ - 'Tag: scrambled eggs with veggies
79
+
80
+
81
+ What are the key macro ingredients for scrambled eggs with veggies?'
82
+ - 'Tag: scrambled eggs with veggies
83
+
84
+
85
+ How should I label scrambled eggs with veggies in terms of dietary categories?'
86
+ - source_sentence: 'Tag: mixed vegetable stir-fry
87
+
88
+
89
+ Micro ingredients required to cook mixed vegetable stir-fry:
90
+
91
+ Salt, Cornstarch, Black Pepper Powder'
92
+ sentences:
93
+ - 'Tag: vegan pad thai
94
+
95
+
96
+ Can you provide a thorough explanation of how to cook vegan pad thai?'
97
+ - 'Tag: chicken & broccoli alfredo
98
+
99
+
100
+ What’s involved in preparing the ingredients for chicken & broccoli alfredo?'
101
+ - 'Tag: mixed vegetable stir-fry
102
+
103
+
104
+ What are the main components of mixed vegetable stir-fry?'
105
+ - source_sentence: 'Tag: vegan pad thai
106
+
107
+
108
+ Cook time of vegan pad thai based on different serving sizes: Serving 1 - 20 mins,
109
+ Serving 2 - 25 mins, Serving 3 - 30 mins, Serving 4 - 35 mins'
110
+ sentences:
111
+ - 'Tag: vegan pad thai
112
+
113
+
114
+ What’s the expected cook time for vegan pad thai?'
115
+ - 'Tag: scrambled eggs with veggies
116
+
117
+
118
+ What dietary classifications suit scrambled eggs with veggies?'
119
+ - 'Tag: vegetable pulao
120
+
121
+
122
+ What are some creative garnishing tips for vegetable pulao?'
123
+ model-index:
124
+ - name: SentenceTransformer
125
+ results:
126
+ - task:
127
+ type: information-retrieval
128
+ name: Information Retrieval
129
+ dataset:
130
+ name: dim 384
131
+ type: dim_384
132
+ metrics:
133
+ - type: cosine_accuracy@1
134
+ value: 0.9688300597779675
135
+ name: Cosine Accuracy@1
136
+ - type: cosine_accuracy@3
137
+ value: 0.9701110162254484
138
+ name: Cosine Accuracy@3
139
+ - type: cosine_accuracy@5
140
+ value: 0.9748078565328779
141
+ name: Cosine Accuracy@5
142
+ - type: cosine_accuracy@10
143
+ value: 0.9946626814688301
144
+ name: Cosine Accuracy@10
145
+ - type: cosine_precision@1
146
+ value: 0.9688300597779675
147
+ name: Cosine Precision@1
148
+ - type: cosine_precision@3
149
+ value: 0.8469968687731283
150
+ name: Cosine Precision@3
151
+ - type: cosine_precision@5
152
+ value: 0.8014944491887276
153
+ name: Cosine Precision@5
154
+ - type: cosine_precision@10
155
+ value: 0.4411614005123826
156
+ name: Cosine Precision@10
157
+ - type: cosine_recall@1
158
+ value: 0.3285582123541133
159
+ name: Cosine Recall@1
160
+ - type: cosine_recall@3
161
+ value: 0.6209009393680616
162
+ name: Cosine Recall@3
163
+ - type: cosine_recall@5
164
+ value: 0.8938791122768492
165
+ name: Cosine Recall@5
166
+ - type: cosine_recall@10
167
+ value: 0.9605094343458989
168
+ name: Cosine Recall@10
169
+ - type: cosine_ndcg@10
170
+ value: 0.9592536302802654
171
+ name: Cosine Ndcg@10
172
+ - type: cosine_mrr@10
173
+ value: 0.9733707623385245
174
+ name: Cosine Mrr@10
175
+ - type: cosine_map@100
176
+ value: 0.9539794228951505
177
+ name: Cosine Map@100
178
+ - task:
179
+ type: information-retrieval
180
+ name: Information Retrieval
181
+ dataset:
182
+ name: dim 256
183
+ type: dim_256
184
+ metrics:
185
+ - type: cosine_accuracy@1
186
+ value: 0.9679760888129804
187
+ name: Cosine Accuracy@1
188
+ - type: cosine_accuracy@3
189
+ value: 0.9692570452604612
190
+ name: Cosine Accuracy@3
191
+ - type: cosine_accuracy@5
192
+ value: 0.9752348420153715
193
+ name: Cosine Accuracy@5
194
+ - type: cosine_accuracy@10
195
+ value: 0.9948761742100769
196
+ name: Cosine Accuracy@10
197
+ - type: cosine_precision@1
198
+ value: 0.9679760888129804
199
+ name: Cosine Precision@1
200
+ - type: cosine_precision@3
201
+ value: 0.8459294050668943
202
+ name: Cosine Precision@3
203
+ - type: cosine_precision@5
204
+ value: 0.7992741246797609
205
+ name: Cosine Precision@5
206
+ - type: cosine_precision@10
207
+ value: 0.43917591801878736
208
+ name: Cosine Precision@10
209
+ - type: cosine_recall@1
210
+ value: 0.32842427107478345
211
+ name: Cosine Recall@1
212
+ - type: cosine_recall@3
213
+ value: 0.6204243930706356
214
+ name: Cosine Recall@3
215
+ - type: cosine_recall@5
216
+ value: 0.8918949005733805
217
+ name: Cosine Recall@5
218
+ - type: cosine_recall@10
219
+ value: 0.9569316518238379
220
+ name: Cosine Recall@10
221
+ - type: cosine_ndcg@10
222
+ value: 0.9566533189656364
223
+ name: Cosine Ndcg@10
224
+ - type: cosine_mrr@10
225
+ value: 0.9727438392094664
226
+ name: Cosine Mrr@10
227
+ - type: cosine_map@100
228
+ value: 0.9511517923410544
229
+ name: Cosine Map@100
230
+ - task:
231
+ type: information-retrieval
232
+ name: Information Retrieval
233
+ dataset:
234
+ name: dim 128
235
+ type: dim_128
236
+ metrics:
237
+ - type: cosine_accuracy@1
238
+ value: 0.9694705380017079
239
+ name: Cosine Accuracy@1
240
+ - type: cosine_accuracy@3
241
+ value: 0.9705380017079419
242
+ name: Cosine Accuracy@3
243
+ - type: cosine_accuracy@5
244
+ value: 0.9760888129803587
245
+ name: Cosine Accuracy@5
246
+ - type: cosine_accuracy@10
247
+ value: 0.9948761742100769
248
+ name: Cosine Accuracy@10
249
+ - type: cosine_precision@1
250
+ value: 0.9694705380017079
251
+ name: Cosine Precision@1
252
+ - type: cosine_precision@3
253
+ value: 0.8471391972672928
254
+ name: Cosine Precision@3
255
+ - type: cosine_precision@5
256
+ value: 0.798462852263023
257
+ name: Cosine Precision@5
258
+ - type: cosine_precision@10
259
+ value: 0.43800170794193005
260
+ name: Cosine Precision@10
261
+ - type: cosine_recall@1
262
+ value: 0.3286967284778983
263
+ name: Cosine Recall@1
264
+ - type: cosine_recall@3
265
+ value: 0.6210852039363994
266
+ name: Cosine Recall@3
267
+ - type: cosine_recall@5
268
+ value: 0.8912874628929282
269
+ name: Cosine Recall@5
270
+ - type: cosine_recall@10
271
+ value: 0.9550379203773738
272
+ name: Cosine Recall@10
273
+ - type: cosine_ndcg@10
274
+ value: 0.9558695124747556
275
+ name: Cosine Ndcg@10
276
+ - type: cosine_mrr@10
277
+ value: 0.9739451594756885
278
+ name: Cosine Mrr@10
279
+ - type: cosine_map@100
280
+ value: 0.9499982560169666
281
+ name: Cosine Map@100
282
+ - task:
283
+ type: information-retrieval
284
+ name: Information Retrieval
285
+ dataset:
286
+ name: dim 64
287
+ type: dim_64
288
+ metrics:
289
+ - type: cosine_accuracy@1
290
+ value: 0.9698975234842016
291
+ name: Cosine Accuracy@1
292
+ - type: cosine_accuracy@3
293
+ value: 0.9720324508966696
294
+ name: Cosine Accuracy@3
295
+ - type: cosine_accuracy@5
296
+ value: 0.9771562766865927
297
+ name: Cosine Accuracy@5
298
+ - type: cosine_accuracy@10
299
+ value: 0.9938087105038429
300
+ name: Cosine Accuracy@10
301
+ - type: cosine_precision@1
302
+ value: 0.9698975234842016
303
+ name: Cosine Precision@1
304
+ - type: cosine_precision@3
305
+ value: 0.8472815257614573
306
+ name: Cosine Precision@3
307
+ - type: cosine_precision@5
308
+ value: 0.7965841161400511
309
+ name: Cosine Precision@5
310
+ - type: cosine_precision@10
311
+ value: 0.4339666951323655
312
+ name: Cosine Precision@10
313
+ - type: cosine_recall@1
314
+ value: 0.3288006791102436
315
+ name: Cosine Recall@1
316
+ - type: cosine_recall@3
317
+ value: 0.621300984099874
318
+ name: Cosine Recall@3
319
+ - type: cosine_recall@5
320
+ value: 0.889481670123216
321
+ name: Cosine Recall@5
322
+ - type: cosine_recall@10
323
+ value: 0.9478284738318897
324
+ name: Cosine Recall@10
325
+ - type: cosine_ndcg@10
326
+ value: 0.9517343805870713
327
+ name: Cosine Ndcg@10
328
+ - type: cosine_mrr@10
329
+ value: 0.974398746831496
330
+ name: Cosine Mrr@10
331
+ - type: cosine_map@100
332
+ value: 0.9459942940005901
333
+ name: Cosine Map@100
334
+ - task:
335
+ type: information-retrieval
336
+ name: Information Retrieval
337
+ dataset:
338
+ name: dim 32
339
+ type: dim_32
340
+ metrics:
341
+ - type: cosine_accuracy@1
342
+ value: 0.9690435525192144
343
+ name: Cosine Accuracy@1
344
+ - type: cosine_accuracy@3
345
+ value: 0.9707514944491887
346
+ name: Cosine Accuracy@3
347
+ - type: cosine_accuracy@5
348
+ value: 0.9769427839453458
349
+ name: Cosine Accuracy@5
350
+ - type: cosine_accuracy@10
351
+ value: 0.9929547395388557
352
+ name: Cosine Accuracy@10
353
+ - type: cosine_precision@1
354
+ value: 0.9690435525192144
355
+ name: Cosine Precision@1
356
+ - type: cosine_precision@3
357
+ value: 0.8464987190435526
358
+ name: Cosine Precision@3
359
+ - type: cosine_precision@5
360
+ value: 0.7940222032450898
361
+ name: Cosine Precision@5
362
+ - type: cosine_precision@10
363
+ value: 0.4318531169940221
364
+ name: Cosine Precision@10
365
+ - type: cosine_recall@1
366
+ value: 0.3286197185962344
367
+ name: Cosine Recall@1
368
+ - type: cosine_recall@3
369
+ value: 0.6208008011060958
370
+ name: Cosine Recall@3
371
+ - type: cosine_recall@5
372
+ value: 0.8871009719002887
373
+ name: Cosine Recall@5
374
+ - type: cosine_recall@10
375
+ value: 0.9440570228945548
376
+ name: Cosine Recall@10
377
+ - type: cosine_ndcg@10
378
+ value: 0.9489614439178549
379
+ name: Cosine Ndcg@10
380
+ - type: cosine_mrr@10
381
+ value: 0.9734810669215016
382
+ name: Cosine Mrr@10
383
+ - type: cosine_map@100
384
+ value: 0.9417483259746888
385
+ name: Cosine Map@100
386
+ ---
387
+
388
+ # SentenceTransformer
389
+
390
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
391
+
392
+ ## Model Details
393
+
394
+ ### Model Description
395
+ - **Model Type:** Sentence Transformer
396
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
397
+ - **Maximum Sequence Length:** 512 tokens
398
+ - **Output Dimensionality:** 384 tokens
399
+ - **Similarity Function:** Cosine Similarity
400
+ <!-- - **Training Dataset:** Unknown -->
401
+ <!-- - **Language:** Unknown -->
402
+ <!-- - **License:** Unknown -->
403
+
404
+ ### Model Sources
405
+
406
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
407
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
408
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
409
+
410
+ ### Full Model Architecture
411
+
412
+ ```
413
+ SentenceTransformer(
414
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
415
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
416
+ (2): Normalize()
417
+ )
418
+ ```
419
+
420
+ ## Usage
421
+
422
+ ### Direct Usage (Sentence Transformers)
423
+
424
+ First install the Sentence Transformers library:
425
+
426
+ ```bash
427
+ pip install -U sentence-transformers
428
+ ```
429
+
430
+ Then you can load this model and run inference.
431
+ ```python
432
+ from sentence_transformers import SentenceTransformer
433
+
434
+ # Download from the 🤗 Hub
435
+ model = SentenceTransformer("Adi-0-0-Gupta/Embedding-v2")
436
+ # Run inference
437
+ sentences = [
438
+ 'Tag: vegan pad thai\n\nCook time of vegan pad thai based on different serving sizes: Serving 1 - 20 mins, Serving 2 - 25 mins, Serving 3 - 30 mins, Serving 4 - 35 mins',
439
+ 'Tag: vegan pad thai\n\nWhat’s the expected cook time for vegan pad thai?',
440
+ 'Tag: scrambled eggs with veggies\n\nWhat dietary classifications suit scrambled eggs with veggies?',
441
+ ]
442
+ embeddings = model.encode(sentences)
443
+ print(embeddings.shape)
444
+ # [3, 384]
445
+
446
+ # Get the similarity scores for the embeddings
447
+ similarities = model.similarity(embeddings, embeddings)
448
+ print(similarities.shape)
449
+ # [3, 3]
450
+ ```
451
+
452
+ <!--
453
+ ### Direct Usage (Transformers)
454
+
455
+ <details><summary>Click to see the direct usage in Transformers</summary>
456
+
457
+ </details>
458
+ -->
459
+
460
+ <!--
461
+ ### Downstream Usage (Sentence Transformers)
462
+
463
+ You can finetune this model on your own dataset.
464
+
465
+ <details><summary>Click to expand</summary>
466
+
467
+ </details>
468
+ -->
469
+
470
+ <!--
471
+ ### Out-of-Scope Use
472
+
473
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
474
+ -->
475
+
476
+ ## Evaluation
477
+
478
+ ### Metrics
479
+
480
+ #### Information Retrieval
481
+ * Dataset: `dim_384`
482
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
483
+
484
+ | Metric | Value |
485
+ |:--------------------|:----------|
486
+ | cosine_accuracy@1 | 0.9688 |
487
+ | cosine_accuracy@3 | 0.9701 |
488
+ | cosine_accuracy@5 | 0.9748 |
489
+ | cosine_accuracy@10 | 0.9947 |
490
+ | cosine_precision@1 | 0.9688 |
491
+ | cosine_precision@3 | 0.847 |
492
+ | cosine_precision@5 | 0.8015 |
493
+ | cosine_precision@10 | 0.4412 |
494
+ | cosine_recall@1 | 0.3286 |
495
+ | cosine_recall@3 | 0.6209 |
496
+ | cosine_recall@5 | 0.8939 |
497
+ | cosine_recall@10 | 0.9605 |
498
+ | cosine_ndcg@10 | 0.9593 |
499
+ | cosine_mrr@10 | 0.9734 |
500
+ | **cosine_map@100** | **0.954** |
501
+
502
+ #### Information Retrieval
503
+ * Dataset: `dim_256`
504
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
505
+
506
+ | Metric | Value |
507
+ |:--------------------|:-----------|
508
+ | cosine_accuracy@1 | 0.968 |
509
+ | cosine_accuracy@3 | 0.9693 |
510
+ | cosine_accuracy@5 | 0.9752 |
511
+ | cosine_accuracy@10 | 0.9949 |
512
+ | cosine_precision@1 | 0.968 |
513
+ | cosine_precision@3 | 0.8459 |
514
+ | cosine_precision@5 | 0.7993 |
515
+ | cosine_precision@10 | 0.4392 |
516
+ | cosine_recall@1 | 0.3284 |
517
+ | cosine_recall@3 | 0.6204 |
518
+ | cosine_recall@5 | 0.8919 |
519
+ | cosine_recall@10 | 0.9569 |
520
+ | cosine_ndcg@10 | 0.9567 |
521
+ | cosine_mrr@10 | 0.9727 |
522
+ | **cosine_map@100** | **0.9512** |
523
+
524
+ #### Information Retrieval
525
+ * Dataset: `dim_128`
526
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
527
+
528
+ | Metric | Value |
529
+ |:--------------------|:---------|
530
+ | cosine_accuracy@1 | 0.9695 |
531
+ | cosine_accuracy@3 | 0.9705 |
532
+ | cosine_accuracy@5 | 0.9761 |
533
+ | cosine_accuracy@10 | 0.9949 |
534
+ | cosine_precision@1 | 0.9695 |
535
+ | cosine_precision@3 | 0.8471 |
536
+ | cosine_precision@5 | 0.7985 |
537
+ | cosine_precision@10 | 0.438 |
538
+ | cosine_recall@1 | 0.3287 |
539
+ | cosine_recall@3 | 0.6211 |
540
+ | cosine_recall@5 | 0.8913 |
541
+ | cosine_recall@10 | 0.955 |
542
+ | cosine_ndcg@10 | 0.9559 |
543
+ | cosine_mrr@10 | 0.9739 |
544
+ | **cosine_map@100** | **0.95** |
545
+
546
+ #### Information Retrieval
547
+ * Dataset: `dim_64`
548
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
549
+
550
+ | Metric | Value |
551
+ |:--------------------|:----------|
552
+ | cosine_accuracy@1 | 0.9699 |
553
+ | cosine_accuracy@3 | 0.972 |
554
+ | cosine_accuracy@5 | 0.9772 |
555
+ | cosine_accuracy@10 | 0.9938 |
556
+ | cosine_precision@1 | 0.9699 |
557
+ | cosine_precision@3 | 0.8473 |
558
+ | cosine_precision@5 | 0.7966 |
559
+ | cosine_precision@10 | 0.434 |
560
+ | cosine_recall@1 | 0.3288 |
561
+ | cosine_recall@3 | 0.6213 |
562
+ | cosine_recall@5 | 0.8895 |
563
+ | cosine_recall@10 | 0.9478 |
564
+ | cosine_ndcg@10 | 0.9517 |
565
+ | cosine_mrr@10 | 0.9744 |
566
+ | **cosine_map@100** | **0.946** |
567
+
568
+ #### Information Retrieval
569
+ * Dataset: `dim_32`
570
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
571
+
572
+ | Metric | Value |
573
+ |:--------------------|:-----------|
574
+ | cosine_accuracy@1 | 0.969 |
575
+ | cosine_accuracy@3 | 0.9708 |
576
+ | cosine_accuracy@5 | 0.9769 |
577
+ | cosine_accuracy@10 | 0.993 |
578
+ | cosine_precision@1 | 0.969 |
579
+ | cosine_precision@3 | 0.8465 |
580
+ | cosine_precision@5 | 0.794 |
581
+ | cosine_precision@10 | 0.4319 |
582
+ | cosine_recall@1 | 0.3286 |
583
+ | cosine_recall@3 | 0.6208 |
584
+ | cosine_recall@5 | 0.8871 |
585
+ | cosine_recall@10 | 0.9441 |
586
+ | cosine_ndcg@10 | 0.949 |
587
+ | cosine_mrr@10 | 0.9735 |
588
+ | **cosine_map@100** | **0.9417** |
589
+
590
+ <!--
591
+ ## Bias, Risks and Limitations
592
+
593
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
594
+ -->
595
+
596
+ <!--
597
+ ### Recommendations
598
+
599
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
600
+ -->
601
+
602
+ ## Training Details
603
+
604
+ ### Training Dataset
605
+
606
+ #### Unnamed Dataset
607
+
608
+
609
+ * Size: 42,333 training samples
610
+ * Columns: <code>positive</code> and <code>anchor</code>
611
+ * Approximate statistics based on the first 1000 samples:
612
+ | | positive | anchor |
613
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
614
+ | type | string | string |
615
+ | details | <ul><li>min: 17 tokens</li><li>mean: 71.13 tokens</li><li>max: 433 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 22.97 tokens</li><li>max: 41 tokens</li></ul> |
616
+ * Samples:
617
+ | positive | anchor |
618
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
619
+ | <code>Tag: beef and broccoli<br><br>A small description of beef and broccoli: Stir fried broccoli and tender beef strips stir-fried in a rich savory sauce.</code> | <code>Tag: beef and broccoli<br><br>How do you describe beef and broccoli?</code> |
620
+ | <code>Tag: beef and broccoli<br><br>Garnishing tips for beef and broccoli: Best served on it's own or on top of hot rice with chopped scallions!</code> | <code>Tag: beef and broccoli<br><br>What are some classic garnishes for beef and broccoli?</code> |
621
+ | <code>Tag: beef and broccoli<br><br>For beef and broccoli, these dietary tags go well with it: dinner, contains soy, meat recipes, asian american cuisine, lunch, american cuisine, beef recipes, asian cuisine, chinese cuisine, hearty recipes, rice recipes, protein rich recipes, non vegetarian, saucy recipes, stir fry recipes, healthy recipes</code> | <code>Tag: beef and broccoli<br><br>What dietary labels suit beef and broccoli?</code> |
622
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
623
+ ```json
624
+ {
625
+ "loss": "MultipleNegativesRankingLoss",
626
+ "matryoshka_dims": [
627
+ 384,
628
+ 256,
629
+ 128,
630
+ 64,
631
+ 32
632
+ ],
633
+ "matryoshka_weights": [
634
+ 1,
635
+ 1,
636
+ 1,
637
+ 1,
638
+ 1
639
+ ],
640
+ "n_dims_per_step": -1
641
+ }
642
+ ```
643
+
644
+ ### Training Hyperparameters
645
+ #### Non-Default Hyperparameters
646
+
647
+ - `eval_strategy`: steps
648
+ - `per_device_train_batch_size`: 32
649
+ - `per_device_eval_batch_size`: 32
650
+ - `gradient_accumulation_steps`: 16
651
+ - `learning_rate`: 2e-05
652
+ - `num_train_epochs`: 100
653
+ - `lr_scheduler_type`: constant
654
+ - `warmup_ratio`: 0.1
655
+ - `bf16`: True
656
+ - `tf32`: True
657
+ - `load_best_model_at_end`: True
658
+ - `optim`: adamw_torch_fused
659
+ - `batch_sampler`: no_duplicates
660
+
661
+ #### All Hyperparameters
662
+ <details><summary>Click to expand</summary>
663
+
664
+ - `overwrite_output_dir`: False
665
+ - `do_predict`: False
666
+ - `eval_strategy`: steps
667
+ - `prediction_loss_only`: True
668
+ - `per_device_train_batch_size`: 32
669
+ - `per_device_eval_batch_size`: 32
670
+ - `per_gpu_train_batch_size`: None
671
+ - `per_gpu_eval_batch_size`: None
672
+ - `gradient_accumulation_steps`: 16
673
+ - `eval_accumulation_steps`: None
674
+ - `learning_rate`: 2e-05
675
+ - `weight_decay`: 0.0
676
+ - `adam_beta1`: 0.9
677
+ - `adam_beta2`: 0.999
678
+ - `adam_epsilon`: 1e-08
679
+ - `max_grad_norm`: 1.0
680
+ - `num_train_epochs`: 100
681
+ - `max_steps`: -1
682
+ - `lr_scheduler_type`: constant
683
+ - `lr_scheduler_kwargs`: {}
684
+ - `warmup_ratio`: 0.1
685
+ - `warmup_steps`: 0
686
+ - `log_level`: passive
687
+ - `log_level_replica`: warning
688
+ - `log_on_each_node`: True
689
+ - `logging_nan_inf_filter`: True
690
+ - `save_safetensors`: True
691
+ - `save_on_each_node`: False
692
+ - `save_only_model`: False
693
+ - `restore_callback_states_from_checkpoint`: False
694
+ - `no_cuda`: False
695
+ - `use_cpu`: False
696
+ - `use_mps_device`: False
697
+ - `seed`: 42
698
+ - `data_seed`: None
699
+ - `jit_mode_eval`: False
700
+ - `use_ipex`: False
701
+ - `bf16`: True
702
+ - `fp16`: False
703
+ - `fp16_opt_level`: O1
704
+ - `half_precision_backend`: auto
705
+ - `bf16_full_eval`: False
706
+ - `fp16_full_eval`: False
707
+ - `tf32`: True
708
+ - `local_rank`: 0
709
+ - `ddp_backend`: None
710
+ - `tpu_num_cores`: None
711
+ - `tpu_metrics_debug`: False
712
+ - `debug`: []
713
+ - `dataloader_drop_last`: False
714
+ - `dataloader_num_workers`: 0
715
+ - `dataloader_prefetch_factor`: None
716
+ - `past_index`: -1
717
+ - `disable_tqdm`: False
718
+ - `remove_unused_columns`: True
719
+ - `label_names`: None
720
+ - `load_best_model_at_end`: True
721
+ - `ignore_data_skip`: False
722
+ - `fsdp`: []
723
+ - `fsdp_min_num_params`: 0
724
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
725
+ - `fsdp_transformer_layer_cls_to_wrap`: None
726
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
727
+ - `deepspeed`: None
728
+ - `label_smoothing_factor`: 0.0
729
+ - `optim`: adamw_torch_fused
730
+ - `optim_args`: None
731
+ - `adafactor`: False
732
+ - `group_by_length`: False
733
+ - `length_column_name`: length
734
+ - `ddp_find_unused_parameters`: None
735
+ - `ddp_bucket_cap_mb`: None
736
+ - `ddp_broadcast_buffers`: False
737
+ - `dataloader_pin_memory`: True
738
+ - `dataloader_persistent_workers`: False
739
+ - `skip_memory_metrics`: True
740
+ - `use_legacy_prediction_loop`: False
741
+ - `push_to_hub`: False
742
+ - `resume_from_checkpoint`: None
743
+ - `hub_model_id`: None
744
+ - `hub_strategy`: every_save
745
+ - `hub_private_repo`: False
746
+ - `hub_always_push`: False
747
+ - `gradient_checkpointing`: False
748
+ - `gradient_checkpointing_kwargs`: None
749
+ - `include_inputs_for_metrics`: False
750
+ - `eval_do_concat_batches`: True
751
+ - `fp16_backend`: auto
752
+ - `push_to_hub_model_id`: None
753
+ - `push_to_hub_organization`: None
754
+ - `mp_parameters`:
755
+ - `auto_find_batch_size`: False
756
+ - `full_determinism`: False
757
+ - `torchdynamo`: None
758
+ - `ray_scope`: last
759
+ - `ddp_timeout`: 1800
760
+ - `torch_compile`: False
761
+ - `torch_compile_backend`: None
762
+ - `torch_compile_mode`: None
763
+ - `dispatch_batches`: None
764
+ - `split_batches`: None
765
+ - `include_tokens_per_second`: False
766
+ - `include_num_input_tokens_seen`: False
767
+ - `neftune_noise_alpha`: None
768
+ - `optim_target_modules`: None
769
+ - `batch_eval_metrics`: False
770
+ - `batch_sampler`: no_duplicates
771
+ - `multi_dataset_batch_sampler`: proportional
772
+
773
+ </details>
774
+
775
+ ### Training Logs
776
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_32_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
777
+ |:------:|:----:|:-------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|:---------------------:|
778
+ | 0.3023 | 25 | 2.7893 | 0.9106 | 0.9169 | 0.8833 | 0.9193 | 0.9013 |
779
+ | 0.6047 | 50 | 1.6554 | 0.9061 | 0.9153 | 0.8858 | 0.9199 | 0.8970 |
780
+ | 0.9070 | 75 | 0.7514 | 0.9361 | 0.9382 | 0.9216 | 0.9423 | 0.9292 |
781
+ | 1.2079 | 100 | 1.2044 | 0.9334 | 0.9370 | 0.9186 | 0.9413 | 0.9263 |
782
+ | 1.5102 | 125 | 1.4103 | 0.9312 | 0.9342 | 0.9146 | 0.9382 | 0.9222 |
783
+ | 1.8125 | 150 | 0.6925 | 0.9444 | 0.9463 | 0.9326 | 0.9502 | 0.9385 |
784
+ | 2.1134 | 175 | 0.7937 | 0.9333 | 0.9376 | 0.9196 | 0.9410 | 0.9256 |
785
+ | 2.4157 | 200 | 1.3185 | 0.9321 | 0.9355 | 0.9191 | 0.9399 | 0.9245 |
786
+ | 2.7181 | 225 | 1.0296 | 0.9400 | 0.9426 | 0.9293 | 0.9466 | 0.9345 |
787
+ | 3.0189 | 250 | 0.3606 | 0.9342 | 0.9373 | 0.9231 | 0.9417 | 0.9282 |
788
+ | 3.3212 | 275 | 1.2364 | 0.9381 | 0.9410 | 0.9273 | 0.9444 | 0.9312 |
789
+ | 3.6236 | 300 | 1.2507 | 0.9305 | 0.9340 | 0.9193 | 0.9385 | 0.9233 |
790
+ | 3.9259 | 325 | 0.3211 | 0.9500 | 0.9512 | 0.9417 | 0.9540 | 0.9460 |
791
+
792
+
793
+ ### Framework Versions
794
+ - Python: 3.10.12
795
+ - Sentence Transformers: 3.0.1
796
+ - Transformers: 4.41.2
797
+ - PyTorch: 2.1.2+cu121
798
+ - Accelerate: 0.31.0
799
+ - Datasets: 2.19.1
800
+ - Tokenizers: 0.19.1
801
+
802
+ ## Citation
803
+
804
+ ### BibTeX
805
+
806
+ #### Sentence Transformers
807
+ ```bibtex
808
+ @inproceedings{reimers-2019-sentence-bert,
809
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
810
+ author = "Reimers, Nils and Gurevych, Iryna",
811
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
812
+ month = "11",
813
+ year = "2019",
814
+ publisher = "Association for Computational Linguistics",
815
+ url = "https://arxiv.org/abs/1908.10084",
816
+ }
817
+ ```
818
+
819
+ #### MatryoshkaLoss
820
+ ```bibtex
821
+ @misc{kusupati2024matryoshka,
822
+ title={Matryoshka Representation Learning},
823
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
824
+ year={2024},
825
+ eprint={2205.13147},
826
+ archivePrefix={arXiv},
827
+ primaryClass={cs.LG}
828
+ }
829
+ ```
830
+
831
+ #### MultipleNegativesRankingLoss
832
+ ```bibtex
833
+ @misc{henderson2017efficient,
834
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
835
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
836
+ year={2017},
837
+ eprint={1705.00652},
838
+ archivePrefix={arXiv},
839
+ primaryClass={cs.CL}
840
+ }
841
+ ```
842
+
843
+ <!--
844
+ ## Glossary
845
+
846
+ *Clearly define terms in order to be accessible across audiences.*
847
+ -->
848
+
849
+ <!--
850
+ ## Model Card Authors
851
+
852
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
853
+ -->
854
+
855
+ <!--
856
+ ## Model Card Contact
857
+
858
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
859
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../Output/Finetuned_Model/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5977b095bd495263193289975a9b2f32d251ac178883b21a6411b6d177e6bd68
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff