File size: 1,693 Bytes
6aecfe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
tags:
- text-classification
- adapter-transformers
- adapterhub:lingaccept/cola
- roberta
license: "apache-2.0"
---

# Adapter `roberta-base-cola_pfeiffer` for roberta-base

Adapter (with head) trained using the `run_glue.py` script with an extension that retains the best checkpoint (out of 30 epochs).


**This adapter was created for usage with the [Adapters](https://github.com/Adapter-Hub/adapters) library.**

## Usage

First, install `adapters`:

```
pip install -U adapters
```

Now, the adapter can be loaded and activated like this:

```python
from adapters import AutoAdapterModel

model = AutoAdapterModel.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-cola_pfeiffer")
model.set_active_adapters(adapter_name)
```

## Architecture & Training

- Adapter architecture: pfeiffer
- Prediction head: classification
- Dataset: [CoLA](https://nyu-mll.github.io/CoLA/)

## Author Information

- Author name(s): Andreas Rücklé
- Author email: [email protected]
- Author links: [Website](http://rueckle.net), [GitHub](https://github.com/arueckle), [Twitter](https://twitter.com/arueckle)



## Citation

```bibtex
@article{pfeiffer2020AdapterHub,
    title={AdapterHub: A Framework for Adapting Transformers},
    author={Jonas Pfeiffer,
            Andreas R\"uckl\'{e},
            Clifton Poth,
            Aishwarya Kamath,
            Ivan Vuli\'{c},
            Sebastian Ruder,
            Kyunghyun Cho,
            Iryna Gurevych},
    journal={ArXiv},
    year={2020}
}

```

*This adapter has been auto-imported from https://github.com/Adapter-Hub/Hub/blob/master/adapters/ukp/roberta-base-cola_pfeiffer.yaml*.