File size: 1,693 Bytes
6aecfe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
tags:
- text-classification
- adapter-transformers
- adapterhub:lingaccept/cola
- roberta
license: "apache-2.0"
---
# Adapter `roberta-base-cola_pfeiffer` for roberta-base
Adapter (with head) trained using the `run_glue.py` script with an extension that retains the best checkpoint (out of 30 epochs).
**This adapter was created for usage with the [Adapters](https://github.com/Adapter-Hub/adapters) library.**
## Usage
First, install `adapters`:
```
pip install -U adapters
```
Now, the adapter can be loaded and activated like this:
```python
from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-cola_pfeiffer")
model.set_active_adapters(adapter_name)
```
## Architecture & Training
- Adapter architecture: pfeiffer
- Prediction head: classification
- Dataset: [CoLA](https://nyu-mll.github.io/CoLA/)
## Author Information
- Author name(s): Andreas Rücklé
- Author email: [email protected]
- Author links: [Website](http://rueckle.net), [GitHub](https://github.com/arueckle), [Twitter](https://twitter.com/arueckle)
## Citation
```bibtex
@article{pfeiffer2020AdapterHub,
title={AdapterHub: A Framework for Adapting Transformers},
author={Jonas Pfeiffer,
Andreas R\"uckl\'{e},
Clifton Poth,
Aishwarya Kamath,
Ivan Vuli\'{c},
Sebastian Ruder,
Kyunghyun Cho,
Iryna Gurevych},
journal={ArXiv},
year={2020}
}
```
*This adapter has been auto-imported from https://github.com/Adapter-Hub/Hub/blob/master/adapters/ukp/roberta-base-cola_pfeiffer.yaml*. |