AdaptLLM commited on
Commit
ffec6fe
·
verified ·
1 Parent(s): ec123ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -1
README.md CHANGED
@@ -23,7 +23,22 @@ We investigate domain adaptation of MLLMs through post-training, focusing on dat
23
  <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png" width="1000">
24
  </p>
25
 
26
- ## How to use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  ```python
29
  from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
@@ -68,6 +83,11 @@ pred = processor.decode(output[0][answer_start:], skip_special_tokens=True)
68
  print(pred)
69
  ```
70
 
 
 
 
 
 
71
  ## Citation
72
  If you find our work helpful, please cite us.
73
 
 
23
  <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png" width="1000">
24
  </p>
25
 
26
+ ## Resources
27
+ **🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
28
+
29
+ | Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark |
30
+ |:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------|
31
+ | [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - |
32
+ | [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
33
+ | [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
34
+ | [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
35
+ | [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
36
+ | [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
37
+ | [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
38
+
39
+ **Code**: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
40
+
41
+ ## 1. To Chat with AdaMLLM
42
 
43
  ```python
44
  from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
 
83
  print(pred)
84
  ```
85
 
86
+ ## 2. To Evaluate AdaMLLM on Domain-Specific Benchmarks
87
+
88
+ Refer to the [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) to reproduce our results and evaluate many other MLLMs on domain-specific benchmarks.
89
+
90
+
91
  ## Citation
92
  If you find our work helpful, please cite us.
93