Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,94 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- AdaptLLM/medicine-visual-instructions
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- Lin-Chen/open-llava-next-llama3-8b
|
9 |
+
tags:
|
10 |
+
- medical
|
11 |
+
- biology
|
12 |
+
---
|
13 |
+
# Adapting Multimodal Large Language Models to Domains via Post-Training
|
14 |
+
|
15 |
+
This repo contains the **biomedicine MLLM developed from LLaVA-NeXT-Llama3-8B** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930). The correspoding training dataset is in [medicine-visual-instructions](https://huggingface.co/datasets/AdaptLLM/medicine-visual-instructions).
|
16 |
+
|
17 |
+
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
|
18 |
+
|
19 |
+
We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation.
|
20 |
+
**(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.**
|
21 |
+
**(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training.
|
22 |
+
**(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks.
|
23 |
+
|
24 |
+
<p align='center'>
|
25 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
|
26 |
+
</p>
|
27 |
+
|
28 |
+
## How to use
|
29 |
+
|
30 |
+
```python
|
31 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
32 |
+
import torch
|
33 |
+
from PIL import Image
|
34 |
+
import requests
|
35 |
+
|
36 |
+
# Define your input image and instruction here:
|
37 |
+
## image
|
38 |
+
url = "https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png"
|
39 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
40 |
+
|
41 |
+
instruction = "What's in the image?"
|
42 |
+
|
43 |
+
model_path='AdaptLLM/medicine-LLaVA-NeXT-Llama3-8B'
|
44 |
+
|
45 |
+
# =========================== Do NOT need to modify the following ===============================
|
46 |
+
# Load the processor
|
47 |
+
processor = LlavaNextProcessor.from_pretrained(model_path)
|
48 |
+
|
49 |
+
# Define image token
|
50 |
+
image_token = "<|reserved_special_token_4|>"
|
51 |
+
|
52 |
+
# Format the prompt
|
53 |
+
prompt = (
|
54 |
+
f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n"
|
55 |
+
f"You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
56 |
+
f"<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
|
57 |
+
f"{image_token}\n{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
58 |
+
)
|
59 |
+
|
60 |
+
# Load the model
|
61 |
+
model = LlavaNextForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16, device_map="auto")
|
62 |
+
|
63 |
+
# Prepare inputs and generate output
|
64 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
|
65 |
+
answer_start = int(inputs["input_ids"].shape[-1])
|
66 |
+
output = model.generate(**inputs, max_new_tokens=512)
|
67 |
+
|
68 |
+
# Decode predictions
|
69 |
+
pred = processor.decode(output[0][answer_start:], skip_special_tokens=True)
|
70 |
+
print(pred)
|
71 |
+
```
|
72 |
+
|
73 |
+
## Citation
|
74 |
+
If you find our work helpful, please cite us.
|
75 |
+
|
76 |
+
AdaMLLM
|
77 |
+
```bibtex
|
78 |
+
@article{adamllm,
|
79 |
+
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
|
80 |
+
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
|
81 |
+
journal={arXiv preprint arXiv:2411.19930},
|
82 |
+
year={2024}
|
83 |
+
}
|
84 |
+
```
|
85 |
+
|
86 |
+
[Instruction Pre-Training](https://huggingface.co/papers/2406.14491) (EMNLP 2024)
|
87 |
+
```bibtex
|
88 |
+
@article{cheng2024instruction,
|
89 |
+
title={Instruction Pre-Training: Language Models are Supervised Multitask Learners},
|
90 |
+
author={Cheng, Daixuan and Gu, Yuxian and Huang, Shaohan and Bi, Junyu and Huang, Minlie and Wei, Furu},
|
91 |
+
journal={arXiv preprint arXiv:2406.14491},
|
92 |
+
year={2024}
|
93 |
+
}
|
94 |
+
```
|