File size: 8,325 Bytes
6c54243
 
 
 
f45688c
34da571
898e89b
35fbf56
be3c08f
 
 
0d50f46
 
 
 
12aa561
1f7a442
e92526c
34da571
 
e92526c
1f7a442
daefbe9
f38e65e
585929e
e92526c
4c20326
acccec1
cb19c02
044c71d
c2ba972
044c71d
 
31b16a2
bf17083
 
4c20326
4e511ec
 
cb03807
4c20326
 
044c71d
acccec1
044c71d
acccec1
044c71d
acccec1
67fccd0
4c20326
4e511ec
 
 
bf17083
 
858c699
bf17083
 
858c699
bf17083
 
1e83a2b
858c699
 
1e83a2b
858c699
 
bf17083
 
4e511ec
bf17083
858c699
bf17083
b23df41
ef9be67
 
 
 
 
 
 
858c699
ef9be67
858c699
 
bf17083
 
 
 
 
 
 
 
858c699
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
language:
- en
---
# Adapting Multimodal Large Language Models to Domains via Post-Training

This repository provides an implementation preview of our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).

Our code will be available at [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)


We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation. 
**(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.** 
**(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training. 
**(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks.

<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
</p>


<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png" width="1000">
</p>


***************** **Updates** ********************  
- [2024/12/11] Released [food visual instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) for post-training MLLMs
- [2024/12/10] Released evaluation benchmark datasets for biomedicine and food domains: [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark), [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark).
- [2024/12/9] Released AdaMLLM developed from llava-next-llama3-8b: [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B), [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B).
- [2024/12/7] Released [visual-instruction-synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) used to synthesize task triplets based on image-caption pairs.
- [2024/12/6] Released AdaMLLM developed from Qwen2-VL-2B and Llama-3.2-11B-Vision: [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct), [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct), [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct),  [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct), 
- [2024/12/05] Released [biomedicine visual instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) for post-training MLLMs
- [2024/11/29] Released our paper


## Resources
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**

| Model                                                                       | Repo ID in HF 🤗                           | Domain       | Base Model              | Training Data                                                                                  | Evaluation Benchmark |
|:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------|
| [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer     | -  | open-llava-next-llama3-8b    | TBD | -                   |
| [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct     | Biomedicine  | Qwen2-VL-2B-Instruct    | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark)                   |
| [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct     | Food  | Qwen2-VL-2B-Instruct    | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark)                   |
| [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B     | Biomedicine  | open-llava-next-llama3-8b    | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark)                   |
| [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B     | Food  | open-llava-next-llama3-8b    | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) |  [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark)                   |
| [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct     | Biomedicine  | Llama-3.2-11B-Vision-Instruct    | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark)                   |
| [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct     | Food | Llama-3.2-11B-Vision-Instruct    | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) |  [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark)                   |


## Contact  
Daixuan Cheng: `[email protected]`

## About

AdaMLLM represents our latest advancement in building domain-specific foundation models through post-training on synthetic supervised tasks derived from unsupervised contexts.

<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/2aPl6mKIyHeQp8SO4TXAk.png" width="700">
</p>


- **[AdaptLLM](https://huggingface.co/papers/2309.09530): Adapt LLM to domains**  
  We employ rule-based methods to extract tasks from domain-specific corpora, reformatting them into reading comprehension tasks for continued pre-training. Our 7B finance model outperforms domain-specific models of much larger scales, such as BloombergGPT-50B.

- **[AdaMLLM](https://huggingface.co/papers/2411.19930): Adapt Multimodal LLM to domains**  
  We extend supervised task synthesis to multimodality, introducing a unified visual instruction synthesizer to extract instruction-response pairs from domain-specific image-caption pairs. Our synthetic tasks outperform those generated by manual rules, GPT-4, and GPT-4V in improving domain-specific performance for MLLMs.



## Citation
If you find our work helpful, please cite us.

[AdaMLLM](https://huggingface.co/papers/2411.19930)
```bibtex
@article{adamllm,
  title={On Domain-Specific Post-Training for Multimodal Large Language Models},
  author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
  journal={arXiv preprint arXiv:2411.19930},
  year={2024}
}
```

[AdaptLLM](https://huggingface.co/papers/2309.09530) (ICLR 2024)
```bibtex
@inproceedings{
adaptllm,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
```