File size: 8,325 Bytes
6c54243 f45688c 34da571 898e89b 35fbf56 be3c08f 0d50f46 12aa561 1f7a442 e92526c 34da571 e92526c 1f7a442 daefbe9 f38e65e 585929e e92526c 4c20326 acccec1 cb19c02 044c71d c2ba972 044c71d 31b16a2 bf17083 4c20326 4e511ec cb03807 4c20326 044c71d acccec1 044c71d acccec1 044c71d acccec1 67fccd0 4c20326 4e511ec bf17083 858c699 bf17083 858c699 bf17083 1e83a2b 858c699 1e83a2b 858c699 bf17083 4e511ec bf17083 858c699 bf17083 b23df41 ef9be67 858c699 ef9be67 858c699 bf17083 858c699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
language:
- en
---
# Adapting Multimodal Large Language Models to Domains via Post-Training
This repository provides an implementation preview of our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
Our code will be available at [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation.
**(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.**
**(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training.
**(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks.
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
</p>
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png" width="1000">
</p>
***************** **Updates** ********************
- [2024/12/11] Released [food visual instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) for post-training MLLMs
- [2024/12/10] Released evaluation benchmark datasets for biomedicine and food domains: [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark), [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark).
- [2024/12/9] Released AdaMLLM developed from llava-next-llama3-8b: [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B), [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B).
- [2024/12/7] Released [visual-instruction-synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) used to synthesize task triplets based on image-caption pairs.
- [2024/12/6] Released AdaMLLM developed from Qwen2-VL-2B and Llama-3.2-11B-Vision: [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct), [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct), [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct), [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct),
- [2024/12/05] Released [biomedicine visual instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) for post-training MLLMs
- [2024/11/29] Released our paper
## Resources
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
| Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark |
|:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------|
| [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | TBD | - |
| [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
| [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
| [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
## Contact
Daixuan Cheng: `[email protected]`
## About
AdaMLLM represents our latest advancement in building domain-specific foundation models through post-training on synthetic supervised tasks derived from unsupervised contexts.
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/2aPl6mKIyHeQp8SO4TXAk.png" width="700">
</p>
- **[AdaptLLM](https://huggingface.co/papers/2309.09530): Adapt LLM to domains**
We employ rule-based methods to extract tasks from domain-specific corpora, reformatting them into reading comprehension tasks for continued pre-training. Our 7B finance model outperforms domain-specific models of much larger scales, such as BloombergGPT-50B.
- **[AdaMLLM](https://huggingface.co/papers/2411.19930): Adapt Multimodal LLM to domains**
We extend supervised task synthesis to multimodality, introducing a unified visual instruction synthesizer to extract instruction-response pairs from domain-specific image-caption pairs. Our synthetic tasks outperform those generated by manual rules, GPT-4, and GPT-4V in improving domain-specific performance for MLLMs.
## Citation
If you find our work helpful, please cite us.
[AdaMLLM](https://huggingface.co/papers/2411.19930)
```bibtex
@article{adamllm,
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
journal={arXiv preprint arXiv:2411.19930},
year={2024}
}
```
[AdaptLLM](https://huggingface.co/papers/2309.09530) (ICLR 2024)
```bibtex
@inproceedings{
adaptllm,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
``` |