File size: 3,540 Bytes
bc065e0 546862c 04a6062 5499519 546862c bc065e0 9f3c48a 84b5968 9f3c48a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
base_model:
- concedo/KobbleTinyV2-1.1B
library_name: transformers
tags:
- mergekit
- merge
---
# This is the GGUF variant!
The Original Model is [here](https://huggingface.co/Aculi/Tinyllama-2B)
Try this Model in Q8 on my homepage [here](https://home.acu.li/)
# Tinyllama-2B
This is a merge and a finetune to create a small, but very useable Model, and i have to say, its very good.
## Basic Question:
<img src="https://huggingface.co/Aculi/Tinyllama-2B/resolve/main/.huggingface/Screenshot%202024-07-29%20073647.jpg" alt="download.png" width="800" />
## Prompt Template
Tinyllama-2B uses Alpaca:
```
### Instruction:
{prompt}
### Response:
```
### Merge Info:
This is a frankenmerge of: [concedo/KobbleTinyV2-1.1B](https://huggingface.co/concedo/KobbleTinyV2-1.1B)
The following YAML configuration was used to produce this model:
```yaml
dtype: bfloat16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 16]
model: concedo/KobbleTinyV2-1.1B
- sources:
- layer_range: [5, 16]
model: concedo/KobbleTinyV2-1.1B
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- layer_range: [5, 16]
model: concedo/KobbleTinyV2-1.1B
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- layer_range: [16, 22]
model: concedo/KobbleTinyV2-1.1B
```
## Finetune Info:
The following YAML configuration was used to finetune this model:
```yaml
base_model: Fischerboot/2b-tiny-llama-alpaca-instr
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: Fischerboot/freedom-rp-alpaca-shortend
type: alpaca
- path: diffnamehard/toxic-dpo-v0.1-NoWarning-alpaca
type: alpaca
- path: Fischerboot/alpaca-undensored-fixed-50k
type: alpaca
- path: Fischerboot/DAN-alpaca
type: alpaca
- path: Fischerboot/rp-alpaca-next-oone
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/24r
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: true
flash_attention: true
warmup_steps: 10
evals_per_epoch: 2
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
### Training results:
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7881 | 0.0017 | 1 | 2.5329 |
| 1.6899 | 0.4996 | 287 | 1.9272 |
| 1.5511 | 0.9991 | 574 | 1.8750 |
| 1.4797 | 1.4861 | 861 | 1.8476 |
| 1.5279 | 1.9856 | 1148 | 1.8270 |
| 1.4583 | 2.4726 | 1435 | 1.8275 |
| 1.5044 | 2.9721 | 1722 | 1.8215 |
| 1.3051 | 3.4582 | 2009 | 1.8243 |
| 1.5619 | 3.9578 | 2296 | 1.8245 | |