File size: 1,976 Bytes
e9c80eb
75f38ca
 
 
 
 
 
 
 
e9c80eb
 
75f38ca
 
e9c80eb
75f38ca
e9c80eb
75f38ca
 
 
e9c80eb
75f38ca
e9c80eb
75f38ca
e9c80eb
75f38ca
e9c80eb
75f38ca
e9c80eb
75f38ca
e9c80eb
75f38ca
e9c80eb
75f38ca
e9c80eb
75f38ca
e9c80eb
75f38ca
 
 
 
 
 
 
 
 
 
 
 
e9c80eb
75f38ca
e9c80eb
75f38ca
 
 
 
 
 
 
 
 
 
 
 
e9c80eb
 
75f38ca
e9c80eb
75f38ca
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: mistral-7b-sql
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral-7b-sql

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0316

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.3669        | 0.9231 | 3    | 2.0030          |
| 1.9273        | 1.8462 | 6    | 1.6669          |
| 1.5048        | 2.7692 | 9    | 1.4241          |
| 0.915         | 4.0    | 13   | 1.2316          |
| 0.9884        | 4.9231 | 16   | 1.1354          |
| 0.8136        | 5.8462 | 19   | 1.0745          |
| 0.684         | 6.7692 | 22   | 1.0422          |
| 0.4341        | 8.0    | 26   | 1.0330          |
| 0.526         | 8.9231 | 29   | 1.0319          |
| 0.3763        | 9.2308 | 30   | 1.0316          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1