File size: 4,155 Bytes
cc0e089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: movieHunt4-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# movieHunt4-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0005
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 48 | 0.0284 | 0.9959 | 0.9959 | 0.9959 | 0.9974 |
| No log | 2.0 | 96 | 0.0060 | 1.0 | 1.0 | 1.0 | 1.0 |
| No log | 3.0 | 144 | 0.0034 | 1.0 | 1.0 | 1.0 | 1.0 |
| No log | 4.0 | 192 | 0.0025 | 1.0 | 1.0 | 1.0 | 1.0 |
| No log | 5.0 | 240 | 0.0020 | 1.0 | 1.0 | 1.0 | 1.0 |
| No log | 6.0 | 288 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 |
| No log | 7.0 | 336 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 |
| No log | 8.0 | 384 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
| No log | 9.0 | 432 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 |
| No log | 10.0 | 480 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0168 | 11.0 | 528 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0168 | 12.0 | 576 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0168 | 13.0 | 624 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0168 | 14.0 | 672 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0168 | 15.0 | 720 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0168 | 16.0 | 768 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0168 | 17.0 | 816 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0168 | 18.0 | 864 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0168 | 19.0 | 912 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0168 | 20.0 | 960 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0014 | 21.0 | 1008 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0014 | 22.0 | 1056 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0014 | 23.0 | 1104 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0014 | 24.0 | 1152 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0014 | 25.0 | 1200 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0014 | 26.0 | 1248 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0014 | 27.0 | 1296 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0014 | 28.0 | 1344 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0014 | 29.0 | 1392 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0014 | 30.0 | 1440 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|