File size: 17,553 Bytes
bd35d64
e2ae80c
 
 
 
 
 
 
 
 
bd35d64
 
e2ae80c
 
bd35d64
e2ae80c
bd35d64
e2ae80c
 
 
 
 
 
 
 
bd35d64
e2ae80c
bd35d64
e2ae80c
bd35d64
e2ae80c
bd35d64
e2ae80c
bd35d64
e2ae80c
bd35d64
e2ae80c
bd35d64
e2ae80c
bd35d64
e2ae80c
bd35d64
e2ae80c
 
 
 
 
 
 
 
bd35d64
e2ae80c
bd35d64
e2ae80c
 
 
 
 
 
 
bd35d64
 
e2ae80c
bd35d64
e2ae80c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: other
base_model: nvidia/mit-b0
tags:
- generated_from_trainer
datasets:
- scene_parse_150
model-index:
- name: segformer-b0-scene-parse-150
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-scene-parse-150

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8675
- Mean Iou: 0.0830
- Mean Accuracy: 0.1553
- Overall Accuracy: 0.4251
- Per Category Iou: [0.3597057610822097, 0.3444723083110554, 0.6334161356517982, 0.3976080383212627, 0.37469800131781245, 0.5604704466961906, 0.23988992998711206, 0.12690576810401785, 0.29890176448058714, 0.0, 0.14539640665907227, 0.0, 0.3895866848162356, nan, 0.0, 0.0, 0.0, 0.0, 0.3494325806740212, 0.06402476934172241, 0.2781215871860211, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0]
- Per Category Accuracy: [0.6924285026724422, 0.9934500051171835, 0.968882368878404, 0.688172159037774, 0.43075369271556624, 0.7035221673273578, 0.9511609840310746, 0.13871477625769882, 0.34856762988968987, 0.0, 0.3711192956323903, 0.0, 0.830179972311952, nan, 0.0, 0.0, nan, 0.0, 0.5454691948219369, 0.258639742816958, 0.31221904372701265, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0]

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Per Category Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 3.2363        | 10.0  | 200  | 3.4789          | 0.0480   | 0.1134        | 0.3570           | [0.34776362039858744, 0.22716396005487668, 0.48075902292244016, 0.3291210320924504, 0.24404346999556428, 0.18118483487534318, 0.413099381048567, 0.014949604275180951, 0.20976987200081162, 0.0, 0.027225817997434905, 0.0, 0.025186625682203125, nan, 0.0, 0.0, 0.0, 0.0, 0.09577497871340908, 0.0847707420777767, 0.007433562534844824, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0] | [0.7201070665619643, 0.9715825742844472, 0.9755631769191628, 0.7526059088849084, 0.48620754955182427, 0.22294909098010116, 0.8791368148467846, 0.015056957540742356, 0.38658412447805224, 0.0, 0.04656335125539447, 0.0, 0.026468455402465556, nan, 0.0, 0.0, nan, 0.0, 0.1051297201482516, 0.41460719308820576, 0.008173273395995096, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0] |
| 2.2796        | 20.0  | 400  | 3.0639          | 0.0729   | 0.1395        | 0.4248           | [0.4054169729196725, 0.1827672596961913, 0.5600825950640339, 0.3917649962290462, 0.3770419058712594, 0.56305100004092, 0.28967097042898793, 0.03003900819307031, 0.2871440220317861, 0.0, 0.08210268055229296, 0.0, 0.3776770361106769, nan, 0.0, 0.0, nan, 0.0, 0.2258286529981052, 0.032549392718569284, 0.20625110365530638, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0]           | [0.7545012144905754, 0.9830450653293761, 0.975067568014062, 0.8164821488946918, 0.4290809241257417, 0.8060952827302492, 0.9365386275356063, 0.03032512127323268, 0.38771630969939963, 0.0, 0.16046196068029014, 0.0, 0.4778165996440108, nan, 0.0, 0.0, nan, 0.0, 0.28552398345598107, 0.10998091219610207, 0.2386595831630568, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0]        |
| 1.8693        | 30.0  | 600  | 2.9826          | 0.0800   | 0.1555        | 0.4292           | [0.34912224427270383, 0.37038557245837717, 0.5705390010462278, 0.4289785688354097, 0.3489654511016807, 0.5334485359403492, 0.2814315110845303, 0.0993378788475939, 0.2991825253450139, 0.0, 0.12820534617526172, 0.0, 0.44030637208777146, nan, 0.0, 0.0, 0.0, 0.0, 0.3549159972909399, 0.060302941998560816, 0.2956989247311828, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0]         | [0.6555687840739897, 0.9850919387302562, 0.9729727943751694, 0.7947680399392854, 0.45938012877161977, 0.7274111972504833, 0.9586016400517912, 0.10303455605821116, 0.3767268421380643, 0.0, 0.3077323321464644, 0.0, 0.771211022480058, nan, 0.0, 0.0, nan, 0.0, 0.523564484073696, 0.25467148884870405, 0.348385778504291, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0]            |
| 1.9795        | 40.0  | 800  | 2.8947          | 0.0826   | 0.1560        | 0.4229           | [0.36000705470562433, 0.3131759444408609, 0.6375650798341606, 0.38137971707978147, 0.3736203543943253, 0.5301140559612703, 0.23101380548969278, 0.14818364565375686, 0.3265423070672859, 0.0, 0.12490542140930325, 0.0, 0.40079814750948417, nan, 0.0, 0.0, 0.0, 0.0, 0.3570486385915219, 0.07022085539292017, 0.2892958748221906, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0]        | [0.672188869468298, 0.9937911506839968, 0.9694440589708516, 0.6559157188999432, 0.4305643226865295, 0.7569567849401473, 0.9570651704790678, 0.16221998146835995, 0.3965660510625922, 0.0, 0.30989522225736355, 0.0, 0.8044366800711978, nan, 0.0, 0.0, nan, 0.0, 0.5525057742923135, 0.2718253968253968, 0.3324478953821005, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0]           |
| 1.8599        | 50.0  | 1000 | 2.8675          | 0.0830   | 0.1553        | 0.4251           | [0.3597057610822097, 0.3444723083110554, 0.6334161356517982, 0.3976080383212627, 0.37469800131781245, 0.5604704466961906, 0.23988992998711206, 0.12690576810401785, 0.29890176448058714, 0.0, 0.14539640665907227, 0.0, 0.3895866848162356, nan, 0.0, 0.0, 0.0, 0.0, 0.3494325806740212, 0.06402476934172241, 0.2781215871860211, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0]         | [0.6924285026724422, 0.9934500051171835, 0.968882368878404, 0.688172159037774, 0.43075369271556624, 0.7035221673273578, 0.9511609840310746, 0.13871477625769882, 0.34856762988968987, 0.0, 0.3711192956323903, 0.0, 0.830179972311952, nan, 0.0, 0.0, nan, 0.0, 0.5454691948219369, 0.258639742816958, 0.31221904372701265, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0]            |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1