File size: 1,735 Bytes
96434c3 179743a 96434c3 179743a 96434c3 179743a 96434c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- rouge
base_model: google-t5/t5-base
model-index:
- name: t5base-ILC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5base-ILC
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on [ILC dataset](https://huggingface.co/datasets/d0r1h/ILC).
It achieves the following results on the evaluation set:
- Loss: 3.1984
- Rouge1: 8.381
- Rouge2: 3.916
- Rougel: 7.0243
- Rougelsum: 7.8617
- Gen Len: 18.9833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 10.5936 | 0.49 | 500 | 4.4985 | 7.204 | 2.8587 | 5.9813 | 6.774 | 18.9665 |
| 3.9459 | 0.97 | 1000 | 3.1984 | 8.381 | 3.916 | 7.0243 | 7.8617 | 18.9833 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.39.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 |