HODACHI commited on
Commit
cd255fe
·
verified ·
1 Parent(s): 2559728

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -145
README.md CHANGED
@@ -1,199 +1,172 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
 
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
- ### Results
 
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
132
 
 
133
 
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
 
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
 
 
 
 
 
152
 
153
- ## Technical Specifications [optional]
 
 
154
 
155
- ### Model Architecture and Objective
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
 
 
 
 
160
 
161
- [More Information Needed]
 
 
 
 
 
 
 
 
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
 
 
 
 
 
168
 
169
- [More Information Needed]
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
182
 
183
- ## Glossary [optional]
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - ja
4
+ license: llama3
5
+ tags:
6
+ - multimodal
7
+ - vision-language
8
+ - mantis
9
+ - llava
10
+ - llama3
11
+ - siglip
12
+ pipeline_tag: image-to-text
13
  ---
14
 
15
+ # Llama-3-EZO-VLM-1
16
 
17
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/gF93nHQfSej3QFPFe6gfS.png)
18
 
19
+ Based on [SakanaAI/Llama-3-EvoVLM-JP-v2](https://huggingface.co/SakanaAI/Llama-3-EvoVLM-JP-v2),
20
+ it has been enhanced for Japanese usage through additional pre-training and instruction tuning.
21
 
22
+ This model is based on Llama-3-8B-Instruct and is subject to the Llama-3 Terms of Use. For detailed information, please refer to the official Llama-3 license page.
23
 
24
+ このモデルはSakanaAI/Llama-3-EvoVLM-JP-v2をベースにしており、Llama-3の利用規約に従います。詳細については、Llama-3の公式ライセンスページをご参照ください。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ ## Model Details
27
+ This model is based on Llama-3-8B-Instruct, enhanced with multiple tuning techniques to improve its general performance. While it excels in Japanese language tasks, it's designed to meet diverse needs globally.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
+ SakanaAI/Llama-3-EvoVLM-JP-v2をベースとして、複数のチューニング手法を採用のうえ、元のVision性能を落とさずに、汎用的にテキスト処理性能を向上させたモデルです。
30
+ 日本語タスクに優れつつ、世界中の多様なニーズに応える設計となっています。
31
 
 
32
 
33
+ ### [Benchmark Results]
34
 
35
+ #### ElyzaTasks100
36
 
37
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/SiIjRV_ecfFvHCiq9x7BQ.png)
38
+ ベースモデルから、0.7ポイントと大幅な性能向上
39
 
40
+ #### 画像説明力
41
 
42
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/sY4xjsZfdySmZUF1sQZNj.png)
43
+ 4つの例のすべてにおいて、ベースモデルから認識力・説明力の向上を実現。
44
 
 
45
 
46
+ ### 推奨される使用ガイドライン / Recommended Usage Guidelines
47
 
48
+ 1. **商用利用**: 本モデルを商用目的で使用する場合、[email protected] へのメール連絡を強く推奨します。これにより、モデルの応用や改善についての協力の機会が生まれる可能性があります。
49
 
50
+ 2. **クレジット表記**: 本モデルを使用または改変する際は、以下のようなクレジット表記を行うことを推奨します:
51
+ "This project utilizes HODACHI/Llama-3-EZO-VLM-1, a model based on SakanaAI/Llama-3-EvoVLM-JP-v2/Llama-3 and fine-tuned by Axcxept co., ltd."
52
 
53
+ 3. **フィードバック**: モデルの使用経験に関するフィードバックを歓迎します。[email protected] までご連絡ください。
54
 
55
+ これらは推奨事項であり、法的要件ではありません。本モデルの使用は主に SakanaAI/Llama-3-EvoVLM-JP-v2=Llama-3をベースにしており、Llama-3の利用規約に準拠します。
56
 
57
+ 1. **Commercial Use**: If you plan to use this model for commercial purposes, we strongly encourage you to inform us via email at [email protected]. This allows for potential collaboration on model applications and improvements.
58
 
59
+ 2. **Attribution**: When using or adapting this model, we recommend providing attribution as follows:
60
+ "This project utilizes HODACHI/Llama-3-EZO-VLM-1, a model based on SakanaAI/Llama-3-EvoVLM-JP-v2/Llama-3 and fine-tuned by Axcxept co., ltd."
61
 
62
+ 3. **Feedback**: We welcome any feedback on your experience with the model. Please feel free to email us at [email protected].
63
 
64
+ Please note that these are recommendations and not legal requirements. Your use of this model is primarily governed by the Llama-3 License Agreement.
65
 
 
66
 
67
+ ### [Usage]
68
+ ```bash
69
+ pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
70
+ ```
71
 
72
+ ```python
73
+ import requests
74
+ from PIL import Image
75
 
76
+ import torch
77
+ from mantis.models.conversation import Conversation, SeparatorStyle
78
+ from mantis.models.mllava import chat_mllava, LlavaForConditionalGeneration, MLlavaProcessor
79
+ from mantis.models.mllava.utils import conv_templates
80
+ from transformers import AutoTokenizer
81
 
82
+ # 1. Set the system prompt
83
+ conv_llama_3_elyza = Conversation(
84
+ system="<|start_header_id|>system<|end_header_id|>\n\nあなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。",
85
+ roles=("user", "assistant"),
86
+ messages=(),
87
+ offset=0,
88
+ sep_style=SeparatorStyle.LLAMA_3,
89
+ sep="<|eot_id|>",
90
+ )
91
+ conv_templates["llama_3"] = conv_llama_3_elyza
92
 
93
+ # 2. Load model
94
+ device = "cuda" if torch.cuda.is_available() else "cpu"
95
+ model_id = "HODACHI/Llama-3-EZO-VLM-1"
96
 
97
+ processor = MLlavaProcessor.from_pretrained("TIGER-Lab/Mantis-8B-siglip-llama3")
98
+ processor.tokenizer.pad_token = processor.tokenizer.eos_token
99
 
100
+ model = LlavaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, device_map=device).eval()
101
 
102
+ # 3. Prepare a generate config
103
+ generation_kwargs = {
104
+ "max_new_tokens": 256,
105
+ "num_beams": 1,
106
+ "do_sample": False,
107
+ "no_repeat_ngram_size": 3,
108
+ }
109
 
110
+ # 4. Generate
111
+ text = "<image>の信号は何色ですか?"
112
+ url_list = [
113
+ "https://images.unsplash.com/photo-1694831404826-3400c48c188d?q=80&w=2070&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D",
114
+ "https://images.unsplash.com/photo-1693240876439-473af88b4ed7?q=80&w=1974&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
115
+ ]
116
+ images = [
117
+ Image.open(requests.get(url_list[0], stream=True).raw).convert("RGB")
118
+ ]
119
 
120
+ response, history = chat_mllava(text, images, model, processor, **generation_kwargs)
121
 
122
+ print(response)
123
+ # 信号の色は、青色です。
124
 
125
+ # 5. Multi-turn conversation
126
+ text = "では、<image>の信号は?"
127
+ images += [
128
+ Image.open(requests.get(url_list[1], stream=True).raw).convert("RGB")
129
+ ]
130
+ response, history = chat_mllava(text, images, model, processor, history=history, **generation_kwargs)
131
 
132
+ print(response)
133
+ # 赤色
134
+ ```
135
 
 
136
 
137
+ ## Model Details
138
 
139
+ <!-- Provide a longer summary of what this model is. -->
140
 
141
+ - **Developed by:** [Axcxept co., ltd.](https://axcxept.com)
142
+ - **Model type:** Autoregressive Language Model
143
+ - **Language(s):** Japanese
144
+ - **License:** [META LLAMA 3 COMMUNITY LICENSE](https://llama.meta.com/llama3/license/)
145
 
 
146
 
147
+ ### [Model Data]
148
+ #### Training Dataset]
149
+ We extracted high-quality data from Japanese Wikipedia and FineWeb to create instruction data. Our innovative training approach allows for performance improvements across various languages and domains, making the model suitable for global use despite its focus on Japanese data.
150
 
151
+ 日本語のWikiデータおよび、FineWebから良質なデータのみを抽出し、Instructionデータを作成しました。
152
+ このモデルでは日本語に特化させていますが、世界中のどんなユースケースでも利用可能なアプローチです。
153
 
154
+ https://huggingface.co/datasets/legacy-datasets/wikipedia
155
+ https://huggingface.co/datasets/HuggingFaceFW/fineweb
156
 
157
+ #### Data Preprocessing
158
+ We used a plain instruction tuning method to train the model on exemplary responses. This approach enhances the model's ability to understand and generate high-quality responses across various languages and contexts.
159
 
160
+ プレインストラクトチューニング手法を用いて、模範的回答を学習させました。この手法により、モデルは様々な言語やコンテキストにおいて高品質な応答を理解し生成する能力が向上しています。
161
 
162
+ #### Implementation Information
163
+ [Pre-Instruction Training]
164
 
165
+ https://huggingface.co/instruction-pretrain/instruction-synthesizer
166
 
167
+ ### [Hardware]
168
+ A100 × 8(Running in 4h)
169
 
170
+ ### [We are.]
171
+ [![Axcxept logo](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/8OKW86U986ywttvL2RcbG.png)](https://axcxept.com)
172