File size: 4,429 Bytes
dc58e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a373bcb
dc58e92
be17da2
 
dc58e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa6dd69
dc58e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be17da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc58e92
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ft-wav2vec2-with-minds
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ft-wav2vec2-with-minds

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0119
- Accuracy: 0.9972

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 120
- eval_batch_size: 120
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 480
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 5.1595        | 1.0   | 9    | 5.2504          | 0.1125   |
| 3.706         | 2.0   | 18   | 1.7425          | 0.3261   |
| 1.1096        | 3.0   | 27   | 0.5152          | 0.7985   |
| 0.3567        | 4.0   | 36   | 0.1222          | 0.9728   |
| 0.1645        | 5.0   | 45   | 0.0988          | 0.9850   |
| 0.1539        | 6.0   | 54   | 0.0696          | 0.9878   |
| 0.1329        | 7.0   | 63   | 0.0783          | 0.9831   |
| 0.1023        | 8.0   | 72   | 0.0833          | 0.9841   |
| 0.1923        | 9.0   | 81   | 0.0733          | 0.9775   |
| 0.108         | 10.0  | 90   | 0.0294          | 0.9934   |
| 0.0884        | 11.0  | 99   | 0.0331          | 0.9897   |
| 0.1745        | 12.0  | 108  | 0.0288          | 0.9944   |
| 0.0793        | 13.0  | 117  | 0.0545          | 0.9869   |
| 0.0823        | 14.0  | 126  | 0.0551          | 0.9850   |
| 0.0857        | 15.0  | 135  | 0.0401          | 0.9925   |
| 0.0738        | 16.0  | 144  | 0.0329          | 0.9906   |
| 0.0905        | 17.0  | 153  | 0.0324          | 0.9878   |
| 0.1049        | 18.0  | 162  | 0.0379          | 0.9925   |
| 0.0775        | 19.0  | 171  | 0.0410          | 0.9906   |
| 0.07          | 20.0  | 180  | 0.0315          | 0.9925   |
| 0.0519        | 21.0  | 189  | 0.0361          | 0.9897   |
| 0.0679        | 22.0  | 198  | 0.0470          | 0.9878   |
| 0.0771        | 23.0  | 207  | 0.0258          | 0.9934   |
| 0.0588        | 24.0  | 216  | 0.0322          | 0.9934   |
| 0.0566        | 25.0  | 225  | 0.0251          | 0.9906   |
| 0.0665        | 26.0  | 234  | 0.0162          | 0.9963   |
| 0.06          | 27.0  | 243  | 0.0178          | 0.9953   |
| 0.0462        | 28.0  | 252  | 0.0183          | 0.9944   |
| 0.0527        | 29.0  | 261  | 0.0669          | 0.9831   |
| 0.0378        | 30.0  | 270  | 0.0163          | 0.9953   |
| 0.0418        | 31.0  | 279  | 0.0207          | 0.9963   |
| 0.0335        | 32.0  | 288  | 0.0159          | 0.9953   |
| 0.0447        | 33.0  | 297  | 0.0151          | 0.9963   |
| 0.0455        | 34.0  | 306  | 0.0161          | 0.9953   |
| 0.0368        | 35.0  | 315  | 0.0163          | 0.9944   |
| 0.043         | 36.0  | 324  | 0.0136          | 0.9963   |
| 0.0361        | 37.0  | 333  | 0.0181          | 0.9963   |
| 0.0374        | 38.0  | 342  | 0.0149          | 0.9963   |
| 0.0397        | 39.0  | 351  | 0.0119          | 0.9963   |
| 0.0329        | 40.0  | 360  | 0.0164          | 0.9953   |
| 0.0933        | 41.0  | 369  | 0.0119          | 0.9972   |
| 0.0311        | 42.0  | 378  | 0.0144          | 0.9963   |
| 0.0325        | 43.0  | 387  | 0.0131          | 0.9963   |
| 0.0418        | 44.0  | 396  | 0.0207          | 0.9963   |
| 0.0251        | 45.0  | 405  | 0.0178          | 0.9963   |
| 0.0409        | 46.0  | 414  | 0.0149          | 0.9953   |
| 0.0444        | 47.0  | 423  | 0.0155          | 0.9953   |
| 0.0318        | 48.0  | 432  | 0.0169          | 0.9953   |
| 0.0465        | 49.0  | 441  | 0.0171          | 0.9953   |
| 0.0308        | 50.0  | 450  | 0.0173          | 0.9953   |


### Framework versions

- Transformers 4.35.2
- Pytorch 1.12.1+cu116
- Datasets 2.15.0
- Tokenizers 0.15.2