File size: 1,949 Bytes
dc58e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a373bcb
dc58e92
1cebb6a
be17da2
dc58e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa6dd69
dc58e92
 
 
 
 
 
 
 
1cebb6a
dc58e92
 
 
 
 
 
1cebb6a
 
 
 
 
 
 
 
 
 
dc58e92
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ft-wav2vec2-with-minds
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ft-wav2vec2-with-minds

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0333
- Accuracy: 0.9972

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 120
- eval_batch_size: 120
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 480
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.6092        | 1.0   | 9    | 2.4860          | 0.4311   |
| 1.4641        | 2.0   | 18   | 0.5758          | 0.7826   |
| 0.5061        | 3.0   | 27   | 0.1966          | 0.9756   |
| 0.2573        | 4.0   | 36   | 0.1038          | 0.9803   |
| 0.1557        | 5.0   | 45   | 0.0671          | 0.9859   |
| 0.1235        | 6.0   | 54   | 0.0333          | 0.9972   |
| 0.0725        | 7.0   | 63   | 0.0334          | 0.9944   |
| 0.0914        | 8.0   | 72   | 0.0279          | 0.9953   |
| 0.1695        | 9.0   | 81   | 0.0276          | 0.9972   |
| 0.1118        | 10.0  | 90   | 0.0290          | 0.9972   |


### Framework versions

- Transformers 4.35.2
- Pytorch 1.12.1+cu116
- Datasets 2.15.0
- Tokenizers 0.15.2