Upload folder using huggingface_hub
Browse files- Dockerfile +36 -0
- README.md +13 -0
- hotkey.txt +1 -0
- inference.py +297 -0
- models/__init__.py +34 -0
- models/bpe_simple_vocab_16e6.txt.gz +3 -0
- models/imagebind_wrapper.py +221 -0
- models/meta_model_5.pt +3 -0
- models/mmllama3.py +153 -0
- models/tokenizer.model +3 -0
- models/tokenizer.py +85 -0
- models/training_config.yml +83 -0
- requirements.txt +18 -0
- server.py +146 -0
- setup.py +0 -0
- test.sh +60 -0
- training_config.yml +76 -0
Dockerfile
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:12.3.2-cudnn9-devel-ubuntu22.04
|
2 |
+
|
3 |
+
# Set environment variables
|
4 |
+
ENV PYTHONUNBUFFERED=1 \
|
5 |
+
DEBIAN_FRONTEND=noninteractive \
|
6 |
+
CUDA_HOME=/usr/local/cuda \
|
7 |
+
PATH=/usr/local/cuda/bin:$PATH \
|
8 |
+
LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH \
|
9 |
+
NVIDIA_VISIBLE_DEVICES=all \
|
10 |
+
NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
11 |
+
|
12 |
+
# Install system dependencies
|
13 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
14 |
+
python3 \
|
15 |
+
python3-pip \
|
16 |
+
python3-dev \
|
17 |
+
build-essential \
|
18 |
+
ffmpeg \
|
19 |
+
libsndfile1 \
|
20 |
+
curl \
|
21 |
+
git \
|
22 |
+
&& rm -rf /var/lib/apt/lists/*
|
23 |
+
|
24 |
+
# Upgrade pip and install build tools
|
25 |
+
RUN python3 -m pip install --upgrade pip setuptools wheel
|
26 |
+
|
27 |
+
WORKDIR /app
|
28 |
+
|
29 |
+
COPY . .
|
30 |
+
|
31 |
+
# Install requirements
|
32 |
+
RUN pip3 install --no-cache-dir -r requirements.txt
|
33 |
+
|
34 |
+
EXPOSE 8000
|
35 |
+
|
36 |
+
CMD ["python3", "server.py"]
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- any-to-any
|
5 |
+
- omega
|
6 |
+
- omegalabs
|
7 |
+
- bittensor
|
8 |
+
- agi
|
9 |
+
---
|
10 |
+
|
11 |
+
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
|
12 |
+
|
13 |
+
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
hotkey.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
5HEWNpoj22h12CoM4Bue3TyQV9X5ayHcbdG8qwennaqyPw3p
|
inference.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
import itertools
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
from typing import Any, Dict, List
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
from omegaconf import DictConfig
|
14 |
+
from PIL import Image
|
15 |
+
|
16 |
+
from torchtune import config, utils
|
17 |
+
from torchtune.utils._generation import sample
|
18 |
+
from torchtune.models import convert_weights
|
19 |
+
from torchtune.data import Message
|
20 |
+
|
21 |
+
from models.tokenizer import START_IMAGE, END_IMAGE, START_AUDIO, END_AUDIO, START_VIDEO, END_VIDEO
|
22 |
+
from imagebind.models.imagebind_model import ModalityType
|
23 |
+
from diffusers import DiffusionPipeline
|
24 |
+
|
25 |
+
from models import add_proj_convert_weights, _BASE_TRAINABLE
|
26 |
+
import os
|
27 |
+
|
28 |
+
log = utils.get_logger("DEBUG")
|
29 |
+
add_proj_convert_weights()
|
30 |
+
|
31 |
+
|
32 |
+
class InferenceRecipe:
|
33 |
+
"""
|
34 |
+
Recipe for generating tokens from a dense Transformer-based LLM.
|
35 |
+
|
36 |
+
Currently this recipe supports single-GPU generation only. Speculative
|
37 |
+
decoding is not supported.
|
38 |
+
|
39 |
+
For more details on how to use this recipe for generation, please see our
|
40 |
+
tutorial: https://pytorch.org/torchtune/main/tutorials/e2e_flow.html#generation
|
41 |
+
|
42 |
+
For using this recipe with a quantized model, please the following section of
|
43 |
+
the above tutorial:
|
44 |
+
https://pytorch.org/torchtune/main/tutorials/e2e_flow.html#speeding-up-generation-using-quantization
|
45 |
+
"""
|
46 |
+
|
47 |
+
def __init__(self, cfg: DictConfig) -> None:
|
48 |
+
self._device = utils.get_device(device=cfg.device)
|
49 |
+
self._dtype = utils.get_dtype(dtype=cfg.dtype)
|
50 |
+
self._quantizer = config.instantiate(cfg.inference.quantizer)
|
51 |
+
self._quantization_mode = utils.get_quantizer_mode(self._quantizer)
|
52 |
+
self.prompt_template = cfg.inference.prompt_template
|
53 |
+
perception_tokens = cfg.model.perception_tokens
|
54 |
+
self._perception_tokens = ("0 " * perception_tokens)[:perception_tokens]
|
55 |
+
utils.set_seed(seed=cfg.seed)
|
56 |
+
|
57 |
+
def setup(self, cfg: DictConfig) -> None:
|
58 |
+
checkpointer = config.instantiate(cfg.checkpointer)
|
59 |
+
if self._quantization_mode is None:
|
60 |
+
ckpt_dict = checkpointer.load_checkpoint()
|
61 |
+
else:
|
62 |
+
# weights_only needs to be False when loading a quantized model
|
63 |
+
# currently loading a quantized model is only supported with the
|
64 |
+
# FullModelTorchTuneCheckpointer
|
65 |
+
ckpt_dict = checkpointer.load_checkpoint(weights_only=False)
|
66 |
+
|
67 |
+
self._model = self._setup_model(
|
68 |
+
model_cfg=cfg.model,
|
69 |
+
model_state_dict=ckpt_dict[utils.MODEL_KEY],
|
70 |
+
)
|
71 |
+
with self._device:
|
72 |
+
self._model.setup_caches(max_batch_size=cfg.batch_size, dtype=self._dtype)
|
73 |
+
|
74 |
+
self._tokenizer = config.instantiate(cfg.tokenizer)
|
75 |
+
self._mm_ids_start = self._tokenizer.encode(START_IMAGE + START_AUDIO + START_VIDEO, add_eos=False, add_bos=False)
|
76 |
+
self._mm_ids_end = self._tokenizer.encode(END_IMAGE + END_AUDIO + END_VIDEO, add_eos=False, add_bos=False)
|
77 |
+
self.use_clip = cfg.model.use_clip
|
78 |
+
if self.use_clip:
|
79 |
+
self._clip_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-unclip-small", torch_dtype=self._dtype).to(self._device)
|
80 |
+
|
81 |
+
def _setup_model(
|
82 |
+
self,
|
83 |
+
model_cfg: DictConfig,
|
84 |
+
model_state_dict: Dict[str, Any],
|
85 |
+
) -> nn.Module:
|
86 |
+
with utils.set_default_dtype(self._dtype), self._device:
|
87 |
+
model = config.instantiate(model_cfg)
|
88 |
+
|
89 |
+
if self._quantization_mode is not None:
|
90 |
+
model = self._quantizer.quantize(model)
|
91 |
+
model = model.to(device=self._device, dtype=self._dtype)
|
92 |
+
|
93 |
+
model.load_state_dict(model_state_dict)
|
94 |
+
|
95 |
+
# Validate model was loaded in with the expected dtype.
|
96 |
+
utils.validate_expected_param_dtype(model.named_parameters(), dtype=self._dtype)
|
97 |
+
log.debug(f"Model is initialized with precision {self._dtype}.")
|
98 |
+
|
99 |
+
return model
|
100 |
+
|
101 |
+
def mm_process_prompt(self, prompt):
|
102 |
+
return (
|
103 |
+
prompt
|
104 |
+
.replace("{image}", f"{START_IMAGE}{self._perception_tokens}{END_IMAGE}")
|
105 |
+
.replace("{audio}", f"{START_AUDIO}{self._perception_tokens}{END_AUDIO}")
|
106 |
+
.replace("{video}", f"{START_VIDEO}{self._perception_tokens}{END_VIDEO}")
|
107 |
+
)
|
108 |
+
|
109 |
+
def extract_mm_context(self, video_ib_embed, tokens):
|
110 |
+
context = {}
|
111 |
+
in_mm_embed = False
|
112 |
+
for idx, tok in enumerate(tokens):
|
113 |
+
in_mm_embed = in_mm_embed and not tok in self._mm_ids_end
|
114 |
+
if in_mm_embed:
|
115 |
+
#tokens[idx] # to support multiple embeds: get the value, match it up with the sample embed
|
116 |
+
context[idx] = {
|
117 |
+
"ib_embed": video_ib_embed.to(dtype=self._dtype, device=self._device),
|
118 |
+
}
|
119 |
+
in_mm_embed = in_mm_embed or tok in self._mm_ids_start
|
120 |
+
return context
|
121 |
+
|
122 |
+
@torch.no_grad()
|
123 |
+
def generate(self, cfg: DictConfig, video_ib_embed: List[float]):
|
124 |
+
messages = [
|
125 |
+
Message(
|
126 |
+
role="user",
|
127 |
+
content=self.mm_process_prompt(self.prompt_template),
|
128 |
+
),
|
129 |
+
Message(
|
130 |
+
role="assistant",
|
131 |
+
content="",
|
132 |
+
)
|
133 |
+
]
|
134 |
+
tokens, mask = self._tokenizer.tokenize_messages(messages)
|
135 |
+
tokens = tokens[:-2] # strip eot and eos
|
136 |
+
mm_context = [self.extract_mm_context(video_ib_embed, tokens)] # context should be a list, batch-id indexed
|
137 |
+
prompt = torch.tensor(tokens, dtype=torch.int, device=self._device)
|
138 |
+
|
139 |
+
self._model.tok_embeddings.set_context(mm_context)
|
140 |
+
self._model.output.set_context(mm_context)
|
141 |
+
|
142 |
+
bos_id = self._tokenizer.tt_model.encode("<|begin_of_text|>", allowed_special="all")[0]
|
143 |
+
allowed_id = self._tokenizer.tt_model.encode(f"<|eot_id|>{START_IMAGE}{END_IMAGE}{START_AUDIO}{END_AUDIO}{START_VIDEO}{END_VIDEO}", allowed_special="all")
|
144 |
+
disallowed_tokens = list(set(range(bos_id, bos_id + 256)) - set(allowed_id))
|
145 |
+
# self._model.output.weight.data[disallowed_tokens, :] = 0
|
146 |
+
|
147 |
+
def custom_generate_next_token(model, input_pos, x, temperature=1.0, top_k=None):
|
148 |
+
model.tok_embeddings.set_context([])
|
149 |
+
model.output.set_context([])
|
150 |
+
# x: [1, s]
|
151 |
+
# input_pos: [s]
|
152 |
+
logits = model(x, input_pos=input_pos)
|
153 |
+
# logits: [1, s, v] where v is vocab_size
|
154 |
+
# for sampling we extract the logits for the
|
155 |
+
# last token and convert to shape: [v]
|
156 |
+
logits = logits[0, -1]
|
157 |
+
# logits[disallowed_tokens] = float("-inf")
|
158 |
+
# sample the next token
|
159 |
+
token = sample(logits, temperature, top_k)
|
160 |
+
if token in disallowed_tokens:
|
161 |
+
return torch.tensor([self._tokenizer.eos_id]).to(x)
|
162 |
+
return token
|
163 |
+
|
164 |
+
# since quantized model uses torch.compile to get speedup, it needs a warm up / prefill run
|
165 |
+
# to get the accurate performance measurement
|
166 |
+
if self._quantization_mode is not None:
|
167 |
+
log.info("Starting compilation to improve generation performance ...")
|
168 |
+
custom_generate_next_token = torch.compile(
|
169 |
+
custom_generate_next_token, mode="max-autotune", fullgraph=True
|
170 |
+
)
|
171 |
+
t0 = time.perf_counter()
|
172 |
+
_ = utils.generate(
|
173 |
+
model=self._model,
|
174 |
+
prompt=prompt,
|
175 |
+
max_generated_tokens=2,
|
176 |
+
temperature=cfg.temperature,
|
177 |
+
top_k=cfg.top_k,
|
178 |
+
eos_id=self._tokenizer.eos_id,
|
179 |
+
custom_generate_next_token=custom_generate_next_token,
|
180 |
+
)
|
181 |
+
t = time.perf_counter() - t0
|
182 |
+
log.info(f"Warmup run for quantized model takes: {t:.02f} sec")
|
183 |
+
|
184 |
+
t0 = time.perf_counter()
|
185 |
+
generated_tokens = utils.generate(
|
186 |
+
model=self._model,
|
187 |
+
prompt=prompt,
|
188 |
+
max_generated_tokens=cfg.max_new_tokens,
|
189 |
+
temperature=cfg.temperature,
|
190 |
+
top_k=cfg.top_k,
|
191 |
+
eos_id=self._tokenizer.eos_id,
|
192 |
+
custom_generate_next_token=custom_generate_next_token,
|
193 |
+
)
|
194 |
+
t = time.perf_counter() - t0
|
195 |
+
|
196 |
+
cleaned_tokens = [t for t in generated_tokens[len(prompt):] if t not in disallowed_tokens + allowed_id]
|
197 |
+
caption = self._tokenizer.decode(cleaned_tokens)
|
198 |
+
|
199 |
+
# log.debug(f"Generated caption: {caption} in {t:.02f} sec")
|
200 |
+
|
201 |
+
return caption
|
202 |
+
|
203 |
+
|
204 |
+
@torch.no_grad()
|
205 |
+
def generate_batch(self, cfg: DictConfig, video_ib_embed: torch.Tensor):
|
206 |
+
log.info(f"inside generate_batch, video_ib_embed shape: {video_ib_embed.shape}")
|
207 |
+
batch_dim = video_ib_embed.size(0)
|
208 |
+
messages = [
|
209 |
+
Message(
|
210 |
+
role="user",
|
211 |
+
content=self.mm_process_prompt(self.prompt_template),
|
212 |
+
),
|
213 |
+
Message(role="assistant", content="")
|
214 |
+
]
|
215 |
+
tokens, mask = self._tokenizer.tokenize_messages(messages)
|
216 |
+
tokens = tokens[:-2] # strip eot and eos
|
217 |
+
mm_context = [self.extract_mm_context(e, tokens) for e in video_ib_embed] # context should be a list, batch-id indexed
|
218 |
+
prompt = torch.tensor(tokens, dtype=torch.int, device=self._device).expand(batch_dim, -1).clone()
|
219 |
+
prompt_length = prompt.size(1)
|
220 |
+
|
221 |
+
self._model.tok_embeddings.set_context(mm_context)
|
222 |
+
self._model.output.set_context(mm_context)
|
223 |
+
|
224 |
+
bos_id = self._tokenizer.tt_model.encode("<|begin_of_text|>", allowed_special="all")[0]
|
225 |
+
allowed_id = self._tokenizer.tt_model.encode(f"<|eot_id|>{START_IMAGE}{END_IMAGE}{START_AUDIO}{END_AUDIO}{START_VIDEO}{END_VIDEO}", allowed_special="all")
|
226 |
+
disallowed_tokens = list(set(range(bos_id, bos_id + 256)) - set(allowed_id))
|
227 |
+
|
228 |
+
def generate_next_token(model, input_pos, x, temperature=1.0, top_k=None):
|
229 |
+
# x: [B, s]
|
230 |
+
# input_pos: [s]
|
231 |
+
# logits: [B, s, v] where v is vocab_size
|
232 |
+
logits = model(x, input_pos=input_pos)[:, -1]
|
233 |
+
tokens = sample(logits, temperature, top_k)
|
234 |
+
return torch.tensor([
|
235 |
+
[self._tokenizer.eos_id if t in disallowed_tokens else t for t in toks]
|
236 |
+
for toks in tokens
|
237 |
+
]).to(x.device)
|
238 |
+
|
239 |
+
generated_tokens = prompt.clone()
|
240 |
+
# keeps track at a high level if we've already hit a stop token in a sequence so we can early stop
|
241 |
+
stop_token_reached = torch.zeros(batch_dim, dtype=torch.bool, device=prompt.device)
|
242 |
+
|
243 |
+
# generate the first tokens conditioned on the prompt
|
244 |
+
tokens = generate_next_token(
|
245 |
+
self._model,
|
246 |
+
input_pos=torch.arange(0, prompt_length, device=prompt.device),
|
247 |
+
x=prompt,
|
248 |
+
temperature=cfg.temperature,
|
249 |
+
top_k=cfg.top_k,
|
250 |
+
)
|
251 |
+
eot_reached_b = tokens == self._tokenizer.eot_id
|
252 |
+
generated_tokens = torch.cat([generated_tokens, tokens], dim=-1)
|
253 |
+
|
254 |
+
self._model.tok_embeddings.set_context([])
|
255 |
+
self._model.output.set_context([])
|
256 |
+
|
257 |
+
input_pos = torch.tensor([prompt_length], device=prompt.device)
|
258 |
+
for _ in range(cfg.max_new_tokens - 1):
|
259 |
+
tokens = generate_next_token(
|
260 |
+
self._model, input_pos=input_pos, x=tokens, temperature=cfg.temperature, top_k=cfg.top_k
|
261 |
+
)
|
262 |
+
eot_reached_b |= tokens == self._tokenizer.eot_id
|
263 |
+
tokens *= ~eot_reached_b
|
264 |
+
generated_tokens = torch.cat([generated_tokens, tokens], dim=-1)
|
265 |
+
if eot_reached_b.all():
|
266 |
+
print('eot_reached_b.all()')
|
267 |
+
break
|
268 |
+
input_pos += 1
|
269 |
+
|
270 |
+
captions = []
|
271 |
+
for caption_tokens in generated_tokens.tolist():
|
272 |
+
captions.append(self._tokenizer.decode(caption_tokens[prompt.size(1):]))
|
273 |
+
return captions
|
274 |
+
|
275 |
+
|
276 |
+
@config.parse
|
277 |
+
def main(cfg: DictConfig) -> None:
|
278 |
+
config.log_config(recipe_name="InferenceRecipe", cfg=cfg)
|
279 |
+
cfg.model = DictConfig({
|
280 |
+
"_component_": "models.mmllama3_8b",
|
281 |
+
"use_clip": False,
|
282 |
+
"perception_tokens": cfg.model.perception_tokens,
|
283 |
+
})
|
284 |
+
cfg.batch_size = 4
|
285 |
+
cfg.checkpointer.checkpoint_dir = os.path.dirname("/home/salman/tezuesh/omegalabs-anytoany-bittensor/sandboxing/cache/xzistance_omega-a2a-hotkey/meta_model_0.pth")
|
286 |
+
|
287 |
+
cfg.checkpointer.checkpoint_files = ["models/meta_model_0.pt"]
|
288 |
+
cfg.inference.max_new_tokens = 300
|
289 |
+
cfg.tokenizer.path = "./models/tokenizer.model"
|
290 |
+
inference_recipe = InferenceRecipe(cfg)
|
291 |
+
inference_recipe.setup(cfg=cfg)
|
292 |
+
captions = inference_recipe.generate_batch(cfg=cfg, video_ib_embed=torch.randn(4,1024))
|
293 |
+
print(captions)
|
294 |
+
|
295 |
+
|
296 |
+
if __name__ == "__main__":
|
297 |
+
sys.exit(main())
|
models/__init__.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torchtune.models import convert_weights
|
2 |
+
|
3 |
+
from models.tokenizer import a2a_tokenizer
|
4 |
+
from models.mmllama3 import lora_mmllama3_8b, mmllama3_8b, imagebind_huge
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
"a2a_tokenizer",
|
8 |
+
"lora_mmllama3_8b",
|
9 |
+
"mmllama3_8b",
|
10 |
+
"imagebind_huge",
|
11 |
+
|
12 |
+
]
|
13 |
+
|
14 |
+
_BASE_TRAINABLE = [
|
15 |
+
"tok_embeddings.proj_to_llama.0.weight",
|
16 |
+
"tok_embeddings.proj_to_llama.0.bias",
|
17 |
+
"tok_embeddings.proj_to_llama.2.weight",
|
18 |
+
"tok_embeddings.proj_to_llama.2.bias",
|
19 |
+
"tok_embeddings.proj_to_llama.3.weight",
|
20 |
+
"tok_embeddings.proj_to_llama.3.bias",
|
21 |
+
"output.proj_from_llama.0.weight",
|
22 |
+
"output.proj_from_llama.0.bias",
|
23 |
+
"output.proj_from_llama.2.weight",
|
24 |
+
"output.proj_from_llama.2.bias",
|
25 |
+
"output.proj_from_llama.3.weight",
|
26 |
+
"output.proj_from_llama.3.bias",
|
27 |
+
]
|
28 |
+
|
29 |
+
def add_proj_convert_weights():
|
30 |
+
# extend _FROM_META torchtune -> meta mapping with new parameter names
|
31 |
+
# allow existing ckpt-save code to work without changes
|
32 |
+
convert_weights._FROM_META.update({a: a for a in _BASE_TRAINABLE})
|
33 |
+
|
34 |
+
|
models/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
models/imagebind_wrapper.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from typing import BinaryIO, List
|
5 |
+
|
6 |
+
from imagebind import imagebind_model
|
7 |
+
from imagebind.models.imagebind_model import ModalityType
|
8 |
+
from imagebind.models.multimodal_preprocessors import SimpleTokenizer, TextPreprocessor
|
9 |
+
|
10 |
+
|
11 |
+
V2_URL = "https://huggingface.co/jondurbin/videobind-v0.2/resolve/main/videobind.pth"
|
12 |
+
V2_PATH = "./.checkpoints/videobind-v0.2.pth"
|
13 |
+
BPE_PATH = "./models/bpe_simple_vocab_16e6.txt.gz"
|
14 |
+
TOKENIZER = SimpleTokenizer(bpe_path=BPE_PATH)
|
15 |
+
LENGTH_TOKENIZER = SimpleTokenizer(bpe_path=BPE_PATH, context_length=1024)
|
16 |
+
TOKEN_CHUNK_SIZE = 74
|
17 |
+
|
18 |
+
def get_imagebind_v2(path: str=V2_PATH):
|
19 |
+
if not os.path.isfile(path):
|
20 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
21 |
+
torch.hub.download_url_to_file(V2_URL, path, progress=True)
|
22 |
+
imagebind_model = torch.load(path)
|
23 |
+
return imagebind_model
|
24 |
+
|
25 |
+
|
26 |
+
def load_and_transform_text(text, device):
|
27 |
+
if text is None:
|
28 |
+
return None
|
29 |
+
tokens = [TOKENIZER(t).unsqueeze(0).to(device) for t in text]
|
30 |
+
tokens = torch.cat(tokens, dim=0)
|
31 |
+
return tokens
|
32 |
+
|
33 |
+
def split_text_by_token_limit(text, tokenizer, max_tokens=TOKEN_CHUNK_SIZE):
|
34 |
+
def fits_in_token_limit(text_segment):
|
35 |
+
tokens = tokenizer(text_segment)
|
36 |
+
tokens = tokens[tokens != 0][1:-1].tolist()
|
37 |
+
return len(tokens) <= max_tokens
|
38 |
+
|
39 |
+
def recursive_split(text, delimiters):
|
40 |
+
if fits_in_token_limit(text):
|
41 |
+
return [text]
|
42 |
+
if not delimiters:
|
43 |
+
return split_by_tokens(text)
|
44 |
+
delimiter = delimiters[0]
|
45 |
+
parts = text.split(delimiter)
|
46 |
+
result = []
|
47 |
+
current_segment = ""
|
48 |
+
for part in parts:
|
49 |
+
candidate_segment = current_segment + (delimiter if current_segment else '') + part
|
50 |
+
if fits_in_token_limit(candidate_segment):
|
51 |
+
current_segment = candidate_segment
|
52 |
+
else:
|
53 |
+
if current_segment:
|
54 |
+
result.append(current_segment)
|
55 |
+
current_segment = part
|
56 |
+
if current_segment:
|
57 |
+
result.append(current_segment)
|
58 |
+
final_result = []
|
59 |
+
for segment in result:
|
60 |
+
if fits_in_token_limit(segment):
|
61 |
+
final_result.append(segment)
|
62 |
+
else:
|
63 |
+
final_result.extend(recursive_split(segment, delimiters[1:]))
|
64 |
+
return final_result
|
65 |
+
|
66 |
+
def split_by_tokens(text):
|
67 |
+
tokens = tokenizer(text)
|
68 |
+
tokens = tokens[tokens != 0][1:-1].tolist()
|
69 |
+
chunks = np.array_split(tokens, int(len(tokens) / max_tokens) or 1)
|
70 |
+
return [
|
71 |
+
tokenizer.decode(segment_tokens)
|
72 |
+
for segment_tokens in chunks
|
73 |
+
]
|
74 |
+
|
75 |
+
return recursive_split(text, ['\n', '.', '!', '?', ',', ' '])
|
76 |
+
|
77 |
+
def load_and_transform_text_chunks(text, device):
|
78 |
+
if not text:
|
79 |
+
return []
|
80 |
+
all_tokens = LENGTH_TOKENIZER(text)
|
81 |
+
all_tokens = all_tokens[all_tokens != 0][1:-1].tolist()
|
82 |
+
|
83 |
+
return [
|
84 |
+
load_and_transform_text([segment], device)
|
85 |
+
for segment in split_text_by_token_limit(text, LENGTH_TOKENIZER)
|
86 |
+
]
|
87 |
+
|
88 |
+
|
89 |
+
class ImageBind:
|
90 |
+
def __init__(self, device="cuda:0", v2=False):
|
91 |
+
self.device = device
|
92 |
+
self.v2 = v2
|
93 |
+
if v2:
|
94 |
+
if not os.path.exists(V2_PATH):
|
95 |
+
os.makedirs(os.path.dirname(V2_PATH), exist_ok=True)
|
96 |
+
torch.hub.download_url_to_file(
|
97 |
+
V2_URL,
|
98 |
+
V2_PATH,
|
99 |
+
progress=True,
|
100 |
+
)
|
101 |
+
self.imagebind = torch.load(V2_PATH)
|
102 |
+
else:
|
103 |
+
self.imagebind = imagebind_model.imagebind_huge(pretrained=True)
|
104 |
+
self.imagebind.eval()
|
105 |
+
self.imagebind.to(self.device)
|
106 |
+
|
107 |
+
def generate_text_embeddings(self, text: str):
|
108 |
+
if not self.v2:
|
109 |
+
return self.imagebind({
|
110 |
+
ModalityType.TEXT: load_and_transform_text([text], self.device)
|
111 |
+
})[ModalityType.TEXT]
|
112 |
+
chunks = load_and_transform_text_chunks(text, self.device)
|
113 |
+
embeddings = [
|
114 |
+
self.imagebind({ModalityType.TEXT: chunk})[ModalityType.TEXT]
|
115 |
+
for chunk in chunks
|
116 |
+
]
|
117 |
+
return torch.mean(torch.stack(embeddings), dim=0)
|
118 |
+
|
119 |
+
""" Deactivating full embeddings as they are not used in the current implementation
|
120 |
+
def get_inputs(self, video_file: BinaryIO) -> dict:
|
121 |
+
audio_file = video_utils.copy_audio(video_file.name)
|
122 |
+
try:
|
123 |
+
duration = video_utils.get_video_duration(video_file.name)
|
124 |
+
video_data = data.load_and_transform_video_data(
|
125 |
+
[video_file.name],
|
126 |
+
self.device,
|
127 |
+
)
|
128 |
+
audio_data = data.load_and_transform_audio_data(
|
129 |
+
[audio_file.name],
|
130 |
+
self.device,
|
131 |
+
)
|
132 |
+
inputs = {
|
133 |
+
ModalityType.VISION: video_data,
|
134 |
+
ModalityType.AUDIO: audio_data,
|
135 |
+
}
|
136 |
+
return inputs
|
137 |
+
finally:
|
138 |
+
audio_file.close()
|
139 |
+
|
140 |
+
@torch.no_grad()
|
141 |
+
def embed(self, descriptions: List[str], video_files: List[BinaryIO]) -> Embeddings:
|
142 |
+
return_value = None
|
143 |
+
for idx in range(len(descriptions)):
|
144 |
+
inputs = self.get_inputs(video_files[idx])
|
145 |
+
embeddings = self.imagebind(inputs)
|
146 |
+
text_embeddings = self.generate_text_embeddings(descriptions[idx])
|
147 |
+
if not return_value:
|
148 |
+
return_value = Embeddings(
|
149 |
+
video=embeddings[ModalityType.VISION],
|
150 |
+
audio=embeddings[ModalityType.AUDIO],
|
151 |
+
description=text_embeddings,
|
152 |
+
)
|
153 |
+
else:
|
154 |
+
return_value.video = torch.cat((return_value.video, embeddings[ModalityType.VISION]))
|
155 |
+
return_value.audio = torch.cat((return_value.audio, embeddings[ModalityType.AUDIO]))
|
156 |
+
return_value.description = torch.cat((return_value.description, text_embeddings))
|
157 |
+
return return_value
|
158 |
+
|
159 |
+
@torch.no_grad()
|
160 |
+
def embed_only_video(self, video_files: List[BinaryIO]) -> Embeddings:
|
161 |
+
video_filepaths = [video_file.name for video_file in video_files]
|
162 |
+
durations = [video_utils.get_video_duration(f.name) for f in video_files]
|
163 |
+
embeddings = self.imagebind({
|
164 |
+
ModalityType.VISION: [
|
165 |
+
data.load_and_transform_video_data(
|
166 |
+
[video_filepaths[idx]],
|
167 |
+
self.device,
|
168 |
+
)[0]
|
169 |
+
for idx in range(len(video_filepaths))
|
170 |
+
]
|
171 |
+
})
|
172 |
+
return Embeddings(
|
173 |
+
video=embeddings[ModalityType.VISION],
|
174 |
+
)
|
175 |
+
|
176 |
+
@torch.no_grad()
|
177 |
+
def embed_video_and_text(self, video_files: List[BinaryIO], descriptions: List[str]) -> Embeddings:
|
178 |
+
video_filepaths = [video_file.name for video_file in video_files]
|
179 |
+
durations = [video_utils.get_video_duration(f.name) for f in video_files]
|
180 |
+
embeddings = self.imagebind({
|
181 |
+
ModalityType.VISION: [
|
182 |
+
data.load_and_transform_video_data(
|
183 |
+
[video_filepaths[idx]],
|
184 |
+
self.device,
|
185 |
+
)[0]
|
186 |
+
for idx in range(len(video_filepaths))
|
187 |
+
],
|
188 |
+
})
|
189 |
+
description_embeddings = torch.stack([
|
190 |
+
self.generate_text_embeddings(description)
|
191 |
+
for description in descriptions
|
192 |
+
])
|
193 |
+
return Embeddings(
|
194 |
+
video=embeddings[ModalityType.VISION],
|
195 |
+
description=description_embeddings,
|
196 |
+
)
|
197 |
+
|
198 |
+
@torch.no_grad()
|
199 |
+
def embed_text(self, texts: List[str]) -> torch.Tensor:
|
200 |
+
return_value = None
|
201 |
+
for text in texts:
|
202 |
+
emb = self.generate_text_embeddings(text)
|
203 |
+
if not return_value:
|
204 |
+
return_value = emb
|
205 |
+
else:
|
206 |
+
return_value = torch.cat((return_value, emb))
|
207 |
+
return return_value
|
208 |
+
"""
|
209 |
+
|
210 |
+
@torch.no_grad()
|
211 |
+
def embed_text(self, texts: List[str]) -> torch.Tensor:
|
212 |
+
embeddings = []
|
213 |
+
for text in texts:
|
214 |
+
emb = self.generate_text_embeddings(text)
|
215 |
+
embeddings.append(emb)
|
216 |
+
|
217 |
+
if not embeddings:
|
218 |
+
return None
|
219 |
+
|
220 |
+
# Stack all embeddings along dimension 0
|
221 |
+
return torch.stack(embeddings, dim=0)
|
models/meta_model_5.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a40e2a0f8c070103237a1c2c147fef1ba7cac02cd53b9d320370e3fbfee7ad84
|
3 |
+
size 16219158403
|
models/mmllama3.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn, Tensor
|
6 |
+
from torchvision import transforms
|
7 |
+
|
8 |
+
from torchtune.models.llama3 import lora_llama3_8b, llama3_8b
|
9 |
+
from torchtune.modules.peft import LORA_ATTN_MODULES, LoRALinear
|
10 |
+
from torchtune.modules import TransformerDecoder
|
11 |
+
|
12 |
+
with warnings.catch_warnings():
|
13 |
+
warnings.simplefilter("ignore", UserWarning)
|
14 |
+
from imagebind.models import imagebind_model
|
15 |
+
from models.imagebind_wrapper import get_imagebind_v2, V2_PATH
|
16 |
+
from models.imagebind_wrapper import ImageBind
|
17 |
+
|
18 |
+
IMAGEBIND_DIM = 1024
|
19 |
+
CLIP_DIM = 768
|
20 |
+
|
21 |
+
|
22 |
+
class MMEmbedding(nn.Embedding):
|
23 |
+
def __init__(self, e, perception_tokens=1, use_clip=False):
|
24 |
+
super().__init__(
|
25 |
+
num_embeddings=e.num_embeddings,
|
26 |
+
embedding_dim=e.embedding_dim,
|
27 |
+
padding_idx=e.padding_idx,
|
28 |
+
max_norm=e.max_norm,
|
29 |
+
norm_type=e.norm_type,
|
30 |
+
scale_grad_by_freq=e.scale_grad_by_freq,
|
31 |
+
sparse=e.sparse,
|
32 |
+
)
|
33 |
+
self._perception_tokens = perception_tokens
|
34 |
+
self._context = []
|
35 |
+
self._use_clip = use_clip
|
36 |
+
|
37 |
+
dim_in = IMAGEBIND_DIM + (CLIP_DIM if use_clip else 0)
|
38 |
+
dim_out = e.embedding_dim * perception_tokens
|
39 |
+
|
40 |
+
self.proj_to_llama = nn.Sequential(
|
41 |
+
nn.Linear(dim_in, dim_out),
|
42 |
+
nn.GELU(),
|
43 |
+
nn.LayerNorm(dim_out),
|
44 |
+
nn.Linear(dim_out, dim_out),
|
45 |
+
)
|
46 |
+
|
47 |
+
def set_context(self, context):
|
48 |
+
self._context = context
|
49 |
+
|
50 |
+
def forward(self, input: Tensor) -> Tensor:
|
51 |
+
r = super().forward(input)
|
52 |
+
# self._context is first indexed by batch idx
|
53 |
+
for b, context_dict in enumerate(self._context):
|
54 |
+
# then by sequence idx
|
55 |
+
for s, embed in context_dict.items():
|
56 |
+
# and then must be transformed from imagebind dim -> llama3 dim
|
57 |
+
if self._use_clip:
|
58 |
+
llama_embed = self.proj_to_llama(torch.cat([embed["ib_embed"], embed["clip_embed"]]))
|
59 |
+
else:
|
60 |
+
llama_embed = self.proj_to_llama(torch.cat([embed["ib_embed"]]))
|
61 |
+
r[b, s:s+self._perception_tokens] = llama_embed.view(self._perception_tokens, -1)
|
62 |
+
return r
|
63 |
+
|
64 |
+
|
65 |
+
class MMLinear(nn.Linear):
|
66 |
+
def __init__(self, o):
|
67 |
+
super().__init__(
|
68 |
+
in_features=o.in_features,
|
69 |
+
out_features=o.out_features,
|
70 |
+
bias=(o.bias != None)
|
71 |
+
)
|
72 |
+
self._context = []
|
73 |
+
|
74 |
+
dim_out = CLIP_DIM
|
75 |
+
dim_in = o.in_features
|
76 |
+
self.proj_from_llama = nn.Sequential(
|
77 |
+
nn.Linear(dim_in, dim_out),
|
78 |
+
nn.GELU(),
|
79 |
+
nn.LayerNorm(dim_out),
|
80 |
+
nn.Linear(dim_out, dim_out),
|
81 |
+
)
|
82 |
+
|
83 |
+
def set_context(self, context):
|
84 |
+
self._context = context
|
85 |
+
|
86 |
+
def forward(self, input_bsd: Tensor) -> Tensor:
|
87 |
+
# self._context has the indexes of image llama tokens: process these with proj_from_llama
|
88 |
+
self._clip_projections = []
|
89 |
+
# # self._context is first indexed by batch idx
|
90 |
+
# for b, context_dict in enumerate(self._context):
|
91 |
+
# # then by sequence idx
|
92 |
+
# for s, embed in context_dict.items():
|
93 |
+
# # and then must be transformed from llama3 dim -> clip dim
|
94 |
+
# self._clip_projections.append((
|
95 |
+
# self.proj_from_llama(input_bsd[b, s]),
|
96 |
+
# (embed["clip_embed"] if "clip_embed" in embed else None) # terrible
|
97 |
+
# ))
|
98 |
+
r = super().forward(input_bsd)
|
99 |
+
return r
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
def lora_mmllama3_8b(
|
104 |
+
lora_attn_modules: List[LORA_ATTN_MODULES],
|
105 |
+
apply_lora_to_mlp: bool = False,
|
106 |
+
apply_lora_to_output: bool = False,
|
107 |
+
lora_rank: int = 8,
|
108 |
+
lora_alpha: float = 16,
|
109 |
+
quantize_base: bool = False,
|
110 |
+
perception_tokens: int = 2,
|
111 |
+
use_clip: bool = False
|
112 |
+
) -> TransformerDecoder:
|
113 |
+
llama3 = lora_llama3_8b(
|
114 |
+
lora_attn_modules,
|
115 |
+
apply_lora_to_mlp,
|
116 |
+
apply_lora_to_output,
|
117 |
+
lora_rank,
|
118 |
+
lora_alpha,
|
119 |
+
quantize_base,
|
120 |
+
)
|
121 |
+
llama3.tok_embeddings = MMEmbedding(llama3.tok_embeddings, perception_tokens, use_clip)
|
122 |
+
llama3.output = MMLinear(llama3.output)
|
123 |
+
return llama3
|
124 |
+
|
125 |
+
|
126 |
+
def mmllama3_8b(
|
127 |
+
perception_tokens: int = 2,
|
128 |
+
use_clip: bool = False
|
129 |
+
) -> TransformerDecoder:
|
130 |
+
llama3 = llama3_8b()
|
131 |
+
llama3.tok_embeddings = MMEmbedding(llama3.tok_embeddings, perception_tokens, use_clip)
|
132 |
+
llama3.output = MMLinear(llama3.output)
|
133 |
+
return llama3
|
134 |
+
|
135 |
+
|
136 |
+
def imagebind_huge(use_v2: bool=True):
|
137 |
+
if use_v2:
|
138 |
+
imagebind = ImageBind(v2=True)
|
139 |
+
else:
|
140 |
+
imagebind = imagebind_model.imagebind_huge(pretrained=True)
|
141 |
+
imagebind.transform_from_pil = transforms.Compose([
|
142 |
+
transforms.Resize(
|
143 |
+
224, interpolation=transforms.InterpolationMode.BICUBIC
|
144 |
+
),
|
145 |
+
transforms.CenterCrop(224),
|
146 |
+
transforms.ToTensor(),
|
147 |
+
transforms.Normalize(
|
148 |
+
mean=(0.48145466, 0.4578275, 0.40821073),
|
149 |
+
std=(0.26862954, 0.26130258, 0.27577711),
|
150 |
+
),
|
151 |
+
])
|
152 |
+
return imagebind
|
153 |
+
|
models/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82e9d31979e92ab929cd544440f129d9ecd797b69e327f80f17e1c50d5551b55
|
3 |
+
size 2183982
|
models/tokenizer.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from torchtune.modules.tokenizers import TikTokenTokenizer
|
4 |
+
from torchtune.modules.tokenizers._utils import _split_long_repetitions
|
5 |
+
from torchtune.modules.tokenizers._tiktoken import (
|
6 |
+
MAX_ENCODE_CHARS,
|
7 |
+
MAX_NO_WHITESPACE_CHARS,
|
8 |
+
ALL_SPECIAL_TOKENS,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
# use special tokens from TikTokenTokenizer, add some for MM delimiters
|
13 |
+
START_IMAGE = "<|start_image|>"
|
14 |
+
END_IMAGE = "<|end_image|>"
|
15 |
+
START_VIDEO = "<|start_video|>"
|
16 |
+
END_VIDEO = "<|end_video|>"
|
17 |
+
START_AUDIO = "<|start_audio|>"
|
18 |
+
END_AUDIO = "<|end_audio|>"
|
19 |
+
|
20 |
+
A2A_SPECIAL_TOKENS = ALL_SPECIAL_TOKENS[:-2] + [
|
21 |
+
START_IMAGE,
|
22 |
+
END_IMAGE,
|
23 |
+
START_VIDEO,
|
24 |
+
END_VIDEO,
|
25 |
+
START_AUDIO,
|
26 |
+
END_AUDIO,
|
27 |
+
] + ALL_SPECIAL_TOKENS[-2:]
|
28 |
+
|
29 |
+
# override to allow START_IMAGE, END_IMAGE to be encoded
|
30 |
+
class A2ATokenizer(TikTokenTokenizer):
|
31 |
+
def encode(
|
32 |
+
self,
|
33 |
+
text: str,
|
34 |
+
add_bos: bool,
|
35 |
+
add_eos: bool,
|
36 |
+
) -> List[int]:
|
37 |
+
"""
|
38 |
+
Encode a string into a list of token ids. Assumes that the string
|
39 |
+
contains no special tokens.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
text (str): The string to encode.
|
43 |
+
add_bos (bool): Whether to add the beginning of sequence token.
|
44 |
+
add_eos (bool): Whether to add the end of sequence token.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
List[int]: The list of token ids.
|
48 |
+
"""
|
49 |
+
substrs: List[str] = []
|
50 |
+
tokens = []
|
51 |
+
for i in range(0, len(text), MAX_ENCODE_CHARS):
|
52 |
+
substr = text[i : i + MAX_ENCODE_CHARS]
|
53 |
+
# See https://github.com/openai/tiktoken/issues/195
|
54 |
+
sliced_substr = _split_long_repetitions(substr, MAX_NO_WHITESPACE_CHARS)
|
55 |
+
substrs.extend(sliced_substr)
|
56 |
+
for substr in substrs:
|
57 |
+
# allowed_special and disallowed_special are used by tiktoken to define
|
58 |
+
# how special tokens are encoded. Our setting here is to encode any
|
59 |
+
# special token as regular text and prevent tiktoken from raising errors.
|
60 |
+
# This means we should only call encode on strings not containing special tokens.
|
61 |
+
tokens.extend(
|
62 |
+
self.tt_model.encode(
|
63 |
+
substr,
|
64 |
+
allowed_special=set([
|
65 |
+
START_IMAGE,
|
66 |
+
END_IMAGE,
|
67 |
+
START_VIDEO,
|
68 |
+
END_VIDEO,
|
69 |
+
START_AUDIO,
|
70 |
+
END_AUDIO,
|
71 |
+
]),
|
72 |
+
disallowed_special=(),
|
73 |
+
)
|
74 |
+
)
|
75 |
+
if add_bos:
|
76 |
+
tokens.insert(0, self.bos_id)
|
77 |
+
if add_eos:
|
78 |
+
tokens.append(self.eos_id)
|
79 |
+
return tokens
|
80 |
+
|
81 |
+
|
82 |
+
def a2a_tokenizer(path: str) -> TikTokenTokenizer:
|
83 |
+
tiktoken = A2ATokenizer(path, all_special_tokens=A2A_SPECIAL_TOKENS)
|
84 |
+
tiktoken.pad_id = 0
|
85 |
+
return tiktoken
|
models/training_config.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
_component_: models.lora_mmllama3_8b
|
3 |
+
lora_attn_modules:
|
4 |
+
- q_proj
|
5 |
+
- v_proj
|
6 |
+
apply_lora_to_mlp: false
|
7 |
+
apply_lora_to_output: false
|
8 |
+
lora_rank: 8
|
9 |
+
lora_alpha: 16
|
10 |
+
perception_tokens: 2
|
11 |
+
use_clip: false
|
12 |
+
tokenizer:
|
13 |
+
_component_: models.a2a_tokenizer
|
14 |
+
path: models/tokenizer.model
|
15 |
+
checkpointer:
|
16 |
+
_component_: torchtune.utils.FullModelMetaCheckpointer
|
17 |
+
checkpoint_dir: /workspace/omega_a2a/training
|
18 |
+
checkpoint_files:
|
19 |
+
- consolidated.00.pth
|
20 |
+
adapter_checkpoint: null
|
21 |
+
recipe_checkpoint: null
|
22 |
+
output_dir: /workspace/omega_a2a/checkpoints
|
23 |
+
model_type: LLAMA3
|
24 |
+
resume_from_checkpoint: false
|
25 |
+
interim_checkpoint_steps: 5000
|
26 |
+
interim_gen_steps: null
|
27 |
+
max_new_tokens: 170
|
28 |
+
temperature: 0.8
|
29 |
+
top_k: 200
|
30 |
+
dataset:
|
31 |
+
_component_: ds.EvenBatcher
|
32 |
+
buffer_size: 36
|
33 |
+
dataset:
|
34 |
+
_component_: ds.RoundRobinDataset
|
35 |
+
datasets:
|
36 |
+
- _component_: ds.OmegaVideoCaptionDataset
|
37 |
+
length: 500000
|
38 |
+
- _component_: ds.LlavaInstructDataset
|
39 |
+
dataset_path: ds/coco_llava_instruct/output.parquet
|
40 |
+
train_on_input: false
|
41 |
+
- _component_: ds.LlavaInstructDataset
|
42 |
+
dataset_path: ds/vision_flan/output.parquet
|
43 |
+
train_on_input: false
|
44 |
+
- _component_: ds.CaptionInstructDataset
|
45 |
+
dataset_path: ds/sam_llava/output.parquet
|
46 |
+
train_on_input: false
|
47 |
+
seed: null
|
48 |
+
shuffle: true
|
49 |
+
batch_size: 4
|
50 |
+
optimizer:
|
51 |
+
_component_: torch.optim.AdamW
|
52 |
+
weight_decay: 0.0001
|
53 |
+
lr: 3.0e-05
|
54 |
+
lr_scheduler:
|
55 |
+
_component_: torchtune.modules.get_cosine_schedule_with_warmup
|
56 |
+
num_warmup_steps: 100
|
57 |
+
loss:
|
58 |
+
_component_: torch.nn.CrossEntropyLoss
|
59 |
+
epochs: 6
|
60 |
+
max_steps_per_epoch: null
|
61 |
+
gradient_accumulation_steps: 64
|
62 |
+
compile: false
|
63 |
+
output_dir: /tmp/lora_finetune_output
|
64 |
+
metric_logger:
|
65 |
+
_component_: torchtune.utils.metric_logging.DiskLogger
|
66 |
+
log_dir: ${output_dir}
|
67 |
+
log_every_n_steps: null
|
68 |
+
device: cuda
|
69 |
+
dtype: bf16
|
70 |
+
enable_activation_checkpointing: false
|
71 |
+
profiler:
|
72 |
+
_component_: torchtune.utils.profiler
|
73 |
+
enabled: false
|
74 |
+
inference:
|
75 |
+
prompt_template: 'Video:
|
76 |
+
|
77 |
+
{video}
|
78 |
+
|
79 |
+
Caption the previous video.'
|
80 |
+
max_new_tokens: 300
|
81 |
+
temperature: 0.6
|
82 |
+
top_k: 5
|
83 |
+
quantizer: null
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.6.0
|
2 |
+
sentencepiece==0.2.0
|
3 |
+
tiktoken==0.4.0
|
4 |
+
torchtune @ git+https://github.com/pytorch/torchtune.git@8f59c2fecd722691271eecca630a526719a32f76#egg=torchtune
|
5 |
+
lm_eval==0.4
|
6 |
+
torchvision==0.21.0
|
7 |
+
diffusers==0.27.2
|
8 |
+
imagebind @ git+https://github.com/omegalabsinc/ImageBind.git@c3c3b2e1ce6fd850ff42ce0375823fe22880a7cc#egg=imagebind
|
9 |
+
llama3 @ git+https://github.com/meta-llama/llama3.git@af6eedf7042fb51d00b2b26d8ef1ceaab73e1670
|
10 |
+
pytorchvideo @ git+https://github.com/facebookresearch/pytorchvideo.git@28fe037d212663c6a24f373b94cc5d478c8c1a1d
|
11 |
+
wandb==0.17.1
|
12 |
+
numpy==1.26.4
|
13 |
+
huggingface-hub==0.24.0
|
14 |
+
omegaconf==2.3.0
|
15 |
+
uvicorn==0.25.0
|
16 |
+
fastapi==0.104.1
|
17 |
+
pydantic==2.5.2
|
18 |
+
torchaudio==2.6.0
|
server.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from typing import List
|
6 |
+
import base64
|
7 |
+
import io
|
8 |
+
import os
|
9 |
+
import logging
|
10 |
+
from pathlib import Path
|
11 |
+
from inference import InferenceRecipe
|
12 |
+
from fastapi.middleware.cors import CORSMiddleware
|
13 |
+
|
14 |
+
from omegaconf import OmegaConf, DictConfig
|
15 |
+
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
app = FastAPI()
|
20 |
+
|
21 |
+
# Add CORS middleware
|
22 |
+
app.add_middleware(
|
23 |
+
CORSMiddleware,
|
24 |
+
allow_origins=["*"],
|
25 |
+
allow_credentials=True,
|
26 |
+
allow_methods=["*"],
|
27 |
+
allow_headers=["*"],
|
28 |
+
)
|
29 |
+
|
30 |
+
class EmbeddingRequest(BaseModel):
|
31 |
+
embedding: List[float]
|
32 |
+
|
33 |
+
class TextResponse(BaseModel):
|
34 |
+
texts: List[str] = []
|
35 |
+
|
36 |
+
# Model initialization status
|
37 |
+
INITIALIZATION_STATUS = {
|
38 |
+
"model_loaded": False,
|
39 |
+
"error": None
|
40 |
+
}
|
41 |
+
|
42 |
+
# Global model instance
|
43 |
+
inference_recipe = None
|
44 |
+
cfg = None
|
45 |
+
|
46 |
+
|
47 |
+
def initialize_model():
|
48 |
+
"""Initialize the model with correct path resolution"""
|
49 |
+
global inference_recipe, INITIALIZATION_STATUS, cfg
|
50 |
+
try:
|
51 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
52 |
+
logger.info(f"Initializing model on device: {device}")
|
53 |
+
|
54 |
+
# Critical: Use absolute path for model loading
|
55 |
+
model_path = os.path.abspath(os.path.join('/app', 'models'))
|
56 |
+
logger.info(f"Loading models from: {model_path}")
|
57 |
+
|
58 |
+
if not os.path.exists(model_path):
|
59 |
+
raise RuntimeError(f"Model path {model_path} does not exist")
|
60 |
+
|
61 |
+
# Log available model files for debugging
|
62 |
+
model_files = os.listdir(model_path)
|
63 |
+
logger.info(f"Available model files: {model_files}")
|
64 |
+
|
65 |
+
cfg = OmegaConf.load(os.path.join('/app', 'training_config.yml'))
|
66 |
+
cfg.model = DictConfig({
|
67 |
+
"_component_": "models.mmllama3_8b",
|
68 |
+
"use_clip": False,
|
69 |
+
"perception_tokens": cfg.model.perception_tokens,
|
70 |
+
})
|
71 |
+
cfg.checkpointer.checkpoint_dir = model_path
|
72 |
+
cfg.checkpointer.checkpoint_files = ["meta_model_5.pt"]
|
73 |
+
cfg.inference.max_new_tokens = 300
|
74 |
+
cfg.tokenizer.path = os.path.join(model_path, "tokenizer.model")
|
75 |
+
inference_recipe = InferenceRecipe(cfg)
|
76 |
+
inference_recipe.setup(cfg=cfg)
|
77 |
+
INITIALIZATION_STATUS["model_loaded"] = True
|
78 |
+
logger.info("Model initialized successfully")
|
79 |
+
return True
|
80 |
+
except Exception as e:
|
81 |
+
INITIALIZATION_STATUS["error"] = str(e)
|
82 |
+
logger.error(f"Failed to initialize model: {e}")
|
83 |
+
return False
|
84 |
+
|
85 |
+
@app.on_event("startup")
|
86 |
+
async def startup_event():
|
87 |
+
"""Initialize model on startup"""
|
88 |
+
initialize_model()
|
89 |
+
|
90 |
+
@app.get("/api/v1/health")
|
91 |
+
def health_check():
|
92 |
+
"""Health check endpoint"""
|
93 |
+
status = {
|
94 |
+
"status": "healthy" if INITIALIZATION_STATUS["model_loaded"] else "initializing",
|
95 |
+
"initialization_status": INITIALIZATION_STATUS
|
96 |
+
}
|
97 |
+
|
98 |
+
if inference_recipe is not None:
|
99 |
+
status.update({
|
100 |
+
"device": str(inference_recipe._device),
|
101 |
+
"dtype": str(inference_recipe._dtype)
|
102 |
+
})
|
103 |
+
|
104 |
+
return status
|
105 |
+
|
106 |
+
@app.post("/api/v1/inference")
|
107 |
+
async def inference(request: EmbeddingRequest) -> TextResponse:
|
108 |
+
"""Run inference with enhanced error handling and logging"""
|
109 |
+
if not INITIALIZATION_STATUS["model_loaded"]:
|
110 |
+
raise HTTPException(
|
111 |
+
status_code=503,
|
112 |
+
detail=f"Model not ready. Status: {INITIALIZATION_STATUS}"
|
113 |
+
)
|
114 |
+
|
115 |
+
try:
|
116 |
+
# Log input validation
|
117 |
+
logger.info("Received inference request")
|
118 |
+
|
119 |
+
# Convert embedding to tensor
|
120 |
+
embedding = request.embedding # generate() expects List[float]
|
121 |
+
embedding = torch.tensor(embedding)
|
122 |
+
embedding = embedding.unsqueeze(0) # Add batch dimension
|
123 |
+
embedding = embedding.reshape(-1, 1024)
|
124 |
+
logger.info(f"Converted embedding to tensor with shape: {embedding.shape}")
|
125 |
+
|
126 |
+
# Run inference
|
127 |
+
results = inference_recipe.generate_batch(cfg=cfg, video_ib_embed=embedding)
|
128 |
+
logger.info("Generation complete")
|
129 |
+
|
130 |
+
# Convert results to list if it's not already
|
131 |
+
if isinstance(results, str):
|
132 |
+
results = [results]
|
133 |
+
|
134 |
+
return TextResponse(texts=results)
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
logger.error(f"Inference failed: {str(e)}", exc_info=True)
|
138 |
+
raise HTTPException(
|
139 |
+
status_code=500,
|
140 |
+
detail=str(e)
|
141 |
+
)
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
import uvicorn
|
145 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
146 |
+
|
setup.py
ADDED
File without changes
|
test.sh
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Configure bash error handling
|
4 |
+
set -euo pipefail
|
5 |
+
|
6 |
+
# Configuration
|
7 |
+
API_HOST="localhost"
|
8 |
+
API_PORT="8000"
|
9 |
+
API_VERSION="v1"
|
10 |
+
BASE_URL="http://${API_HOST}:${API_PORT}/api/${API_VERSION}"
|
11 |
+
|
12 |
+
# Function to generate test embedding data
|
13 |
+
generate_test_embedding() {
|
14 |
+
python3 - <<EOF
|
15 |
+
import numpy as np
|
16 |
+
import json
|
17 |
+
|
18 |
+
# Generate a 4096-dimensional embedding vector (correct dimension for model)
|
19 |
+
embedding = np.random.randn(4096).astype(np.float32)
|
20 |
+
# Normalize the embedding
|
21 |
+
embedding = embedding / np.linalg.norm(embedding)
|
22 |
+
print(json.dumps(embedding.tolist()), end="")
|
23 |
+
EOF
|
24 |
+
}
|
25 |
+
|
26 |
+
# Function to test health endpoint
|
27 |
+
test_health() {
|
28 |
+
echo "Testing health endpoint..."
|
29 |
+
curl -s "${BASE_URL}/health" || {
|
30 |
+
echo "Health check failed"
|
31 |
+
exit 1
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
# Function to test inference endpoint
|
36 |
+
test_inference() {
|
37 |
+
echo
|
38 |
+
start_time=$(date +%s)
|
39 |
+
echo "Testing inference endpoint..."
|
40 |
+
local embedding_data=$(generate_test_embedding)
|
41 |
+
|
42 |
+
curl -X POST "${BASE_URL}/inference" \
|
43 |
+
-H "Content-Type: application/json" \
|
44 |
+
-d "{
|
45 |
+
\"embedding\": ${embedding_data}
|
46 |
+
}" || {
|
47 |
+
echo "Inference request failed"
|
48 |
+
exit 1
|
49 |
+
}
|
50 |
+
end_time=$(date +%s)
|
51 |
+
duration=$((end_time - start_time))
|
52 |
+
echo "Inference request completed in ${duration} seconds"
|
53 |
+
}
|
54 |
+
|
55 |
+
main() {
|
56 |
+
test_health
|
57 |
+
test_inference
|
58 |
+
}
|
59 |
+
|
60 |
+
main "$@"
|
training_config.yml
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
identity_token: 0 1 2
|
2 |
+
model:
|
3 |
+
_component_: models.lora_mmllama3_8b
|
4 |
+
lora_attn_modules:
|
5 |
+
- q_proj
|
6 |
+
- v_proj
|
7 |
+
apply_lora_to_mlp: false
|
8 |
+
apply_lora_to_output: false
|
9 |
+
lora_rank: 8
|
10 |
+
lora_alpha: 16
|
11 |
+
perception_tokens: 2
|
12 |
+
use_clip: false
|
13 |
+
tokenizer:
|
14 |
+
_component_: models.a2a_tokenizer
|
15 |
+
path: checkpoints/Meta-Llama-3-8B-Instruct/original/tokenizer.model
|
16 |
+
checkpointer:
|
17 |
+
_component_: torchtune.utils.FullModelMetaCheckpointer
|
18 |
+
checkpoint_dir: checkpoints/Meta-Llama-3-8B-Instruct/original/
|
19 |
+
checkpoint_files:
|
20 |
+
- consolidated.00.pth
|
21 |
+
adapter_checkpoint: null
|
22 |
+
recipe_checkpoint: null
|
23 |
+
output_dir: output_checkpoints/experiment_4
|
24 |
+
model_type: LLAMA3
|
25 |
+
resume_from_checkpoint: false
|
26 |
+
interim_checkpoint_steps: 1500000
|
27 |
+
interim_gen_steps: null
|
28 |
+
max_new_tokens: 100
|
29 |
+
temperature: 0.6
|
30 |
+
top_k: 300
|
31 |
+
dataset:
|
32 |
+
_component_: ds.EvenBatcher
|
33 |
+
dataset:
|
34 |
+
_component_: ds.RoundRobinDataset
|
35 |
+
datasets:
|
36 |
+
- _component_: ds.IdentityDataset
|
37 |
+
identity: ${identity_token}
|
38 |
+
length: 250000
|
39 |
+
train_on_input: true
|
40 |
+
seed: null
|
41 |
+
shuffle: true
|
42 |
+
batch_size: 4
|
43 |
+
optimizer:
|
44 |
+
_component_: torch.optim.AdamW
|
45 |
+
weight_decay: 0.01
|
46 |
+
lr: 0.0003
|
47 |
+
lr_scheduler:
|
48 |
+
_component_: torchtune.modules.get_cosine_schedule_with_warmup
|
49 |
+
num_warmup_steps: 100
|
50 |
+
loss:
|
51 |
+
_component_: torch.nn.CrossEntropyLoss
|
52 |
+
epochs: 1
|
53 |
+
max_steps_per_epoch: null
|
54 |
+
gradient_accumulation_steps: 64
|
55 |
+
compile: false
|
56 |
+
output_dir: /tmp/lora_finetune_output
|
57 |
+
metric_logger:
|
58 |
+
_component_: torchtune.utils.metric_logging.DiskLogger
|
59 |
+
log_dir: ${output_dir}
|
60 |
+
log_every_n_steps: null
|
61 |
+
device: cuda
|
62 |
+
dtype: bf16
|
63 |
+
enable_activation_checkpointing: false
|
64 |
+
profiler:
|
65 |
+
_component_: torchtune.utils.profiler
|
66 |
+
enabled: false
|
67 |
+
inference:
|
68 |
+
prompt_template: 'Video:
|
69 |
+
|
70 |
+
{video}
|
71 |
+
|
72 |
+
Caption the previous video.'
|
73 |
+
max_new_tokens: 300
|
74 |
+
temperature: 0.6
|
75 |
+
top_k: 300
|
76 |
+
quantizer: null
|