|
from torchvision import transforms |
|
from timm.data.transforms import RandomResizedCropAndInterpolation |
|
from timm.data.constants import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD |
|
from transformers import AutoConfig |
|
from PIL import Image |
|
from io import BytesIO |
|
import torch.distributed as dist |
|
import numpy as np |
|
import pickle |
|
import base64 |
|
import cv2 |
|
import os |
|
import torch |
|
from transformers import AutoConfig, StoppingCriteria |
|
|
|
try: |
|
from timm.data.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD |
|
except ImportError: |
|
OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073) |
|
OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711) |
|
|
|
|
|
def auto_upgrade(config): |
|
cfg = AutoConfig.from_pretrained(config) |
|
if 'llava' in config and cfg.model_type != 'llava': |
|
print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.") |
|
print("You must upgrade the checkpoint to the new code base (this can be done automatically).") |
|
confirm = input( |
|
"Please confirm that you want to upgrade the checkpoint. [Y/N]") |
|
if confirm.lower() in ["y", "yes"]: |
|
print("Upgrading checkpoint...") |
|
assert len(cfg.architectures) == 1 |
|
setattr(cfg.__class__, "model_type", "llava") |
|
cfg.architectures[0] = 'LlavaLlamaForCausalLM' |
|
cfg.save_pretrained(config) |
|
print("Checkpoint upgraded.") |
|
else: |
|
print("Checkpoint upgrade aborted.") |
|
exit(1) |
|
|
|
|
|
class KeywordsStoppingCriteria(StoppingCriteria): |
|
def __init__(self, keywords, tokenizer, input_ids): |
|
self.keywords = keywords |
|
self.tokenizer = tokenizer |
|
self.start_len = None |
|
self.input_ids = input_ids |
|
|
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
if self.start_len is None: |
|
self.start_len = self.input_ids.shape[1] |
|
else: |
|
outputs = self.tokenizer.batch_decode( |
|
output_ids[:, self.start_len:], skip_special_tokens=True)[0] |
|
for keyword in self.keywords: |
|
if keyword in outputs: |
|
return True |
|
return False |
|
|
|
|
|
def auto_upgrade(config): |
|
cfg = AutoConfig.from_pretrained(config) |
|
if 'llava' in config and cfg.model_type != 'llava': |
|
print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.") |
|
print("You must upgrade the checkpoint to the new code base (this can be done automatically).") |
|
confirm = input( |
|
"Please confirm that you want to upgrade the checkpoint. [Y/N]") |
|
if confirm.lower() in ["y", "yes"]: |
|
print("Upgrading checkpoint...") |
|
assert len(cfg.architectures) == 1 |
|
setattr(cfg.__class__, "model_type", "llava") |
|
cfg.architectures[0] = 'LlavaLlamaForCausalLM' |
|
cfg.save_pretrained(config) |
|
print("Checkpoint upgraded.") |
|
else: |
|
print("Checkpoint upgrade aborted.") |
|
exit(1) |
|
|
|
|
|
|
|
|
|
def identity_func(img): |
|
return img |
|
|
|
|
|
def autocontrast_func(img, cutoff=0): |
|
''' |
|
same output as PIL.ImageOps.autocontrast |
|
''' |
|
n_bins = 256 |
|
|
|
def tune_channel(ch): |
|
n = ch.size |
|
cut = cutoff * n // 100 |
|
if cut == 0: |
|
high, low = ch.max(), ch.min() |
|
else: |
|
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins]) |
|
low = np.argwhere(np.cumsum(hist) > cut) |
|
low = 0 if low.shape[0] == 0 else low[0] |
|
high = np.argwhere(np.cumsum(hist[::-1]) > cut) |
|
high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0] |
|
if high <= low: |
|
table = np.arange(n_bins) |
|
else: |
|
scale = (n_bins - 1) / (high - low) |
|
table = np.arange(n_bins) * scale - low * scale |
|
table[table < 0] = 0 |
|
table[table > n_bins - 1] = n_bins - 1 |
|
table = table.clip(0, 255).astype(np.uint8) |
|
return table[ch] |
|
|
|
channels = [tune_channel(ch) for ch in cv2.split(img)] |
|
out = cv2.merge(channels) |
|
return out |
|
|
|
|
|
def equalize_func(img): |
|
''' |
|
same output as PIL.ImageOps.equalize |
|
PIL's implementation is different from cv2.equalize |
|
''' |
|
n_bins = 256 |
|
|
|
def tune_channel(ch): |
|
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins]) |
|
non_zero_hist = hist[hist != 0].reshape(-1) |
|
step = np.sum(non_zero_hist[:-1]) // (n_bins - 1) |
|
if step == 0: |
|
return ch |
|
n = np.empty_like(hist) |
|
n[0] = step // 2 |
|
n[1:] = hist[:-1] |
|
table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8) |
|
return table[ch] |
|
|
|
channels = [tune_channel(ch) for ch in cv2.split(img)] |
|
out = cv2.merge(channels) |
|
return out |
|
|
|
|
|
def rotate_func(img, degree, fill=(0, 0, 0)): |
|
''' |
|
like PIL, rotate by degree, not radians |
|
''' |
|
H, W = img.shape[0], img.shape[1] |
|
center = W / 2, H / 2 |
|
M = cv2.getRotationMatrix2D(center, degree, 1) |
|
out = cv2.warpAffine(img, M, (W, H), borderValue=fill) |
|
return out |
|
|
|
|
|
def solarize_func(img, thresh=128): |
|
''' |
|
same output as PIL.ImageOps.posterize |
|
''' |
|
table = np.array([el if el < thresh else 255 - el for el in range(256)]) |
|
table = table.clip(0, 255).astype(np.uint8) |
|
out = table[img] |
|
return out |
|
|
|
|
|
def color_func(img, factor): |
|
''' |
|
same output as PIL.ImageEnhance.Color |
|
''' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
M = ( |
|
np.float32([ |
|
[0.886, -0.114, -0.114], |
|
[-0.587, 0.413, -0.587], |
|
[-0.299, -0.299, 0.701]]) * factor |
|
+ np.float32([[0.114], [0.587], [0.299]]) |
|
) |
|
out = np.matmul(img, M).clip(0, 255).astype(np.uint8) |
|
return out |
|
|
|
|
|
def contrast_func(img, factor): |
|
""" |
|
same output as PIL.ImageEnhance.Contrast |
|
""" |
|
mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299])) |
|
table = np.array([( |
|
el - mean) * factor + mean |
|
for el in range(256) |
|
]).clip(0, 255).astype(np.uint8) |
|
out = table[img] |
|
return out |
|
|
|
|
|
def brightness_func(img, factor): |
|
''' |
|
same output as PIL.ImageEnhance.Contrast |
|
''' |
|
table = (np.arange(256, dtype=np.float32) * |
|
factor).clip(0, 255).astype(np.uint8) |
|
out = table[img] |
|
return out |
|
|
|
|
|
def sharpness_func(img, factor): |
|
''' |
|
The differences the this result and PIL are all on the 4 boundaries, the center |
|
areas are same |
|
''' |
|
kernel = np.ones((3, 3), dtype=np.float32) |
|
kernel[1][1] = 5 |
|
kernel /= 13 |
|
degenerate = cv2.filter2D(img, -1, kernel) |
|
if factor == 0.0: |
|
out = degenerate |
|
elif factor == 1.0: |
|
out = img |
|
else: |
|
out = img.astype(np.float32) |
|
degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :] |
|
out[1:-1, 1:-1, :] = degenerate + factor * \ |
|
(out[1:-1, 1:-1, :] - degenerate) |
|
out = out.astype(np.uint8) |
|
return out |
|
|
|
|
|
def shear_x_func(img, factor, fill=(0, 0, 0)): |
|
H, W = img.shape[0], img.shape[1] |
|
M = np.float32([[1, factor, 0], [0, 1, 0]]) |
|
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, |
|
flags=cv2.INTER_LINEAR).astype(np.uint8) |
|
return out |
|
|
|
|
|
def translate_x_func(img, offset, fill=(0, 0, 0)): |
|
''' |
|
same output as PIL.Image.transform |
|
''' |
|
H, W = img.shape[0], img.shape[1] |
|
M = np.float32([[1, 0, -offset], [0, 1, 0]]) |
|
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, |
|
flags=cv2.INTER_LINEAR).astype(np.uint8) |
|
return out |
|
|
|
|
|
def translate_y_func(img, offset, fill=(0, 0, 0)): |
|
''' |
|
same output as PIL.Image.transform |
|
''' |
|
H, W = img.shape[0], img.shape[1] |
|
M = np.float32([[1, 0, 0], [0, 1, -offset]]) |
|
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, |
|
flags=cv2.INTER_LINEAR).astype(np.uint8) |
|
return out |
|
|
|
|
|
def posterize_func(img, bits): |
|
''' |
|
same output as PIL.ImageOps.posterize |
|
''' |
|
out = np.bitwise_and(img, np.uint8(255 << (8 - bits))) |
|
return out |
|
|
|
|
|
def shear_y_func(img, factor, fill=(0, 0, 0)): |
|
H, W = img.shape[0], img.shape[1] |
|
M = np.float32([[1, 0, 0], [factor, 1, 0]]) |
|
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, |
|
flags=cv2.INTER_LINEAR).astype(np.uint8) |
|
return out |
|
|
|
|
|
def cutout_func(img, pad_size, replace=(0, 0, 0)): |
|
replace = np.array(replace, dtype=np.uint8) |
|
H, W = img.shape[0], img.shape[1] |
|
rh, rw = np.random.random(2) |
|
pad_size = pad_size // 2 |
|
ch, cw = int(rh * H), int(rw * W) |
|
x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H) |
|
y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W) |
|
out = img.copy() |
|
out[x1:x2, y1:y2, :] = replace |
|
return out |
|
|
|
|
|
|
|
def enhance_level_to_args(MAX_LEVEL): |
|
def level_to_args(level): |
|
return ((level / MAX_LEVEL) * 1.8 + 0.1,) |
|
return level_to_args |
|
|
|
|
|
def shear_level_to_args(MAX_LEVEL, replace_value): |
|
def level_to_args(level): |
|
level = (level / MAX_LEVEL) * 0.3 |
|
if np.random.random() > 0.5: |
|
level = -level |
|
return (level, replace_value) |
|
|
|
return level_to_args |
|
|
|
|
|
def translate_level_to_args(translate_const, MAX_LEVEL, replace_value): |
|
def level_to_args(level): |
|
level = (level / MAX_LEVEL) * float(translate_const) |
|
if np.random.random() > 0.5: |
|
level = -level |
|
return (level, replace_value) |
|
|
|
return level_to_args |
|
|
|
|
|
def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value): |
|
def level_to_args(level): |
|
level = int((level / MAX_LEVEL) * cutout_const) |
|
return (level, replace_value) |
|
|
|
return level_to_args |
|
|
|
|
|
def solarize_level_to_args(MAX_LEVEL): |
|
def level_to_args(level): |
|
level = int((level / MAX_LEVEL) * 256) |
|
return (level, ) |
|
return level_to_args |
|
|
|
|
|
def none_level_to_args(level): |
|
return () |
|
|
|
|
|
def posterize_level_to_args(MAX_LEVEL): |
|
def level_to_args(level): |
|
level = int((level / MAX_LEVEL) * 4) |
|
return (level, ) |
|
return level_to_args |
|
|
|
|
|
def rotate_level_to_args(MAX_LEVEL, replace_value): |
|
def level_to_args(level): |
|
level = (level / MAX_LEVEL) * 30 |
|
if np.random.random() < 0.5: |
|
level = -level |
|
return (level, replace_value) |
|
|
|
return level_to_args |
|
|
|
|
|
func_dict = { |
|
'Identity': identity_func, |
|
'AutoContrast': autocontrast_func, |
|
'Equalize': equalize_func, |
|
'Rotate': rotate_func, |
|
'Solarize': solarize_func, |
|
'Color': color_func, |
|
'Contrast': contrast_func, |
|
'Brightness': brightness_func, |
|
'Sharpness': sharpness_func, |
|
'ShearX': shear_x_func, |
|
'TranslateX': translate_x_func, |
|
'TranslateY': translate_y_func, |
|
'Posterize': posterize_func, |
|
'ShearY': shear_y_func, |
|
} |
|
|
|
translate_const = 10 |
|
MAX_LEVEL = 10 |
|
replace_value = (128, 128, 128) |
|
arg_dict = { |
|
'Identity': none_level_to_args, |
|
'AutoContrast': none_level_to_args, |
|
'Equalize': none_level_to_args, |
|
'Rotate': rotate_level_to_args(MAX_LEVEL, replace_value), |
|
'Solarize': solarize_level_to_args(MAX_LEVEL), |
|
'Color': enhance_level_to_args(MAX_LEVEL), |
|
'Contrast': enhance_level_to_args(MAX_LEVEL), |
|
'Brightness': enhance_level_to_args(MAX_LEVEL), |
|
'Sharpness': enhance_level_to_args(MAX_LEVEL), |
|
'ShearX': shear_level_to_args(MAX_LEVEL, replace_value), |
|
'TranslateX': translate_level_to_args( |
|
translate_const, MAX_LEVEL, replace_value |
|
), |
|
'TranslateY': translate_level_to_args( |
|
translate_const, MAX_LEVEL, replace_value |
|
), |
|
'Posterize': posterize_level_to_args(MAX_LEVEL), |
|
'ShearY': shear_level_to_args(MAX_LEVEL, replace_value), |
|
} |
|
|
|
|
|
class RandomAugment(object): |
|
|
|
def __init__(self, N=2, M=10, isPIL=False, augs=[]): |
|
self.N = N |
|
self.M = M |
|
self.isPIL = isPIL |
|
if augs: |
|
self.augs = augs |
|
else: |
|
self.augs = list(arg_dict.keys()) |
|
|
|
def get_random_ops(self): |
|
sampled_ops = np.random.choice(self.augs, self.N) |
|
return [(op, 0.5, self.M) for op in sampled_ops] |
|
|
|
def __call__(self, img): |
|
if self.isPIL: |
|
img = np.array(img) |
|
ops = self.get_random_ops() |
|
for name, prob, level in ops: |
|
if np.random.random() > prob: |
|
continue |
|
args = arg_dict[name](level) |
|
img = func_dict[name](img, *args) |
|
return img |
|
|
|
|
|
def build_transform(is_train, randaug=True, input_size=224, interpolation='bicubic', std_mode='IMAGENET_INCEPTION'): |
|
if std_mode == 'IMAGENET_INCEPTION': |
|
mean = IMAGENET_INCEPTION_MEAN |
|
std = IMAGENET_INCEPTION_STD |
|
elif std_mode == 'OPENAI_CLIP': |
|
mean = OPENAI_CLIP_MEAN |
|
std = OPENAI_CLIP_STD |
|
else: |
|
raise NotImplementedError |
|
|
|
if is_train: |
|
crop_scale = float(os.environ.get('TRAIN_CROP_SCALE', 0.9999)) |
|
t = [ |
|
RandomResizedCropAndInterpolation( |
|
input_size, scale=(crop_scale, 1.0), interpolation='bicubic'), |
|
|
|
] |
|
if randaug and os.environ.get('TRAIN_DO_AUG', 'False') == 'True': |
|
print(f'@@@@@ Do random aug during training', flush=True) |
|
t.append( |
|
RandomAugment( |
|
2, 7, isPIL=True, |
|
augs=[ |
|
'Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness', |
|
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate', |
|
])) |
|
else: |
|
print(f'@@@@@ Skip random aug during training', flush=True) |
|
t += [ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=mean, std=std), |
|
] |
|
t = transforms.Compose(t) |
|
else: |
|
t = transforms.Compose([ |
|
transforms.Resize((input_size, input_size), |
|
interpolation=transforms.InterpolationMode.BICUBIC), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=mean, std=std) |
|
]) |
|
|
|
return t |
|
|
|
|
|
def img2b64(img_path): |
|
img = Image.open(img_path) |
|
img_buffer = BytesIO() |
|
img.save(img_buffer, format=img.format) |
|
byte_data = img_buffer.getvalue() |
|
base64_str = base64.b64encode(byte_data) |
|
base64_str = base64_str.decode("utf-8") |
|
return base64_str |
|
|
|
|
|
def str2b64(str): |
|
return base64.b64encode(str.encode('utf-8')).decode('utf-8') |
|
|
|
|
|
def b642str(b64): |
|
return base64.b64decode(b64).decode('utf-8') |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def all_gather(data): |
|
""" |
|
Run all_gather on arbitrary picklable data (not necessarily tensors) |
|
Args: |
|
data: any picklable object |
|
Returns: |
|
list[data]: list of data gathered from each rank |
|
""" |
|
world_size = get_world_size() |
|
if world_size == 1: |
|
return [data] |
|
|
|
|
|
buffer = pickle.dumps(data) |
|
storage = torch.ByteStorage.from_buffer(buffer) |
|
tensor = torch.ByteTensor(storage).to("cuda") |
|
|
|
|
|
local_size = torch.LongTensor([tensor.numel()]).to("cuda") |
|
size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)] |
|
dist.all_gather(size_list, local_size) |
|
size_list = [int(size.item()) for size in size_list] |
|
max_size = max(size_list) |
|
|
|
|
|
|
|
|
|
tensor_list = [] |
|
for _ in size_list: |
|
tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) |
|
if local_size != max_size: |
|
padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") |
|
tensor = torch.cat((tensor, padding), dim=0) |
|
dist.all_gather(tensor_list, tensor) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
|
|
return data_list |
|
|
|
|
|
def mean(lst): |
|
return sum(lst) / len(lst) |
|
|
|
|
|
def stop_gradient_by_name(name: str): |
|
def apply_fn(module): |
|
if hasattr(module, name): |
|
getattr(module, name).requires_grad_(False) |
|
|
|
return apply_fn |
|
|