|
|
|
import gc |
|
import math |
|
import timm |
|
import torch |
|
from torch import Tensor |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss |
|
from typing import List, Optional, Tuple, Union |
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
from transformers import MistralForCausalLM, MistralModel, MistralConfig |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
|
from omnilmm.model.utils import build_transform |
|
from omnilmm.model.resampler import Resampler |
|
|
|
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" |
|
DEFAULT_IM_START_TOKEN = "<im_start>" |
|
DEFAULT_IM_END_TOKEN = "<im_end>" |
|
|
|
|
|
class OmniLMMConfig(MistralConfig): |
|
model_type = "omnilmm" |
|
|
|
|
|
class Identity(torch.nn.Identity): |
|
def forward(self, input: Tensor, **kwargs) -> Tensor: |
|
return super().forward(input) |
|
|
|
|
|
def create_vision_module(config): |
|
vision_tower = timm.create_model('eva02_enormous_patch14_clip_224.laion2b_plus', |
|
pretrained=False, |
|
num_classes=0, |
|
dynamic_img_size=True, |
|
dynamic_img_pad=True) |
|
|
|
if isinstance(vision_tower, timm.models.VisionTransformer): |
|
if vision_tower.attn_pool is not None: |
|
vision_tower.attn_pool = Identity() |
|
|
|
|
|
vision_tower.blocks[-1] = Identity() |
|
|
|
embed_dim = config.hidden_size |
|
resampler = Resampler( |
|
grid_size=int(math.sqrt(config.num_query)), |
|
embed_dim=embed_dim, |
|
num_heads=embed_dim // 128, |
|
kv_dim=vision_tower.embed_dim, |
|
) |
|
return vision_tower, resampler |
|
|
|
|
|
class OmniLMMModel(MistralModel): |
|
config_class = OmniLMMConfig |
|
|
|
def __init__(self, config: OmniLMMConfig, mm_vision_tower=None, mm_hidden_size=None, tune_clip=True): |
|
super(OmniLMMModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
vision_tower, resampler = create_vision_module(config) |
|
|
|
|
|
|
|
|
|
self.vision_tower = [vision_tower] |
|
self.resampler = resampler |
|
if tune_clip: |
|
self.vision_tower = self.vision_tower[0] |
|
|
|
self.vision_config = lambda x: None |
|
|
|
def initialize_vision_modules(self, vision_tower, no_randaug, num_query, image_size, tune_clip=False): |
|
self.config.mm_vision_tower = vision_tower |
|
self.config.use_mm_proj = True |
|
self.config.num_query = num_query |
|
self.config.image_size = image_size |
|
|
|
if not hasattr(self, 'vision_tower'): |
|
vision_tower, resampler = create_vision_module(self.config) |
|
state_dict = torch.load( |
|
'/tt/data/public/multimodal/multimodal_model_ckpts/timm/eva02_enormous_patch14_clip_224.laion2b_plus.pt') |
|
vision_tower.load_state_dict(state_dict, strict=False) |
|
del state_dict |
|
gc.collect() |
|
else: |
|
if isinstance(self.vision_tower, list): |
|
vision_tower = self.vision_tower[0] |
|
else: |
|
vision_tower = self.vision_tower |
|
resampler = self.resampler |
|
self.vision_tower = vision_tower if tune_clip else [vision_tower] |
|
self.resampler = resampler |
|
|
|
train_img_transform = build_transform( |
|
is_train=True, randaug=not no_randaug, input_size=self.config.image_size, std_mode='OPENAI_CLIP') |
|
eval_img_transform = build_transform( |
|
is_train=False, input_size=self.config.image_size, std_mode='OPENAI_CLIP') |
|
|
|
return dict( |
|
image_processor=(train_img_transform, eval_img_transform), |
|
image_token_len=num_query, |
|
vision_config=self.vision_config |
|
) |
|
|
|
def get_vision_embedding(self, pixel_values): |
|
if isinstance(self.vision_tower, list): |
|
vision_tower = self.vision_tower[0] |
|
else: |
|
vision_tower = self.vision_tower |
|
|
|
dtype = vision_tower.pos_embed.data.dtype |
|
vision_embedding = vision_tower.forward_features( |
|
pixel_values.type(dtype)) |
|
if hasattr(vision_tower, 'num_prefix_tokens') and vision_tower.num_prefix_tokens > 0: |
|
vision_embedding = vision_embedding[:, |
|
vision_tower.num_prefix_tokens:] |
|
res = self.resampler(vision_embedding) |
|
return res |
|
|
|
def get_vllm_embedding(self, data): |
|
|
|
if 'vision_hidden_states' not in data: |
|
pixel_values_list = data['pixel_values'] |
|
vision_hidden_states = [] |
|
for pixel_values in pixel_values_list: |
|
if len(pixel_values) > 0: |
|
vision_hidden_states.append(self.get_vision_embedding(pixel_values.unsqueeze(0))[0]) |
|
else: |
|
vision_hidden_states.append([]) |
|
else: |
|
vision_hidden_states = data['vision_hidden_states'] |
|
|
|
|
|
inputs_embeds = self.embed_tokens(data['input_ids']) |
|
vision_hidden_states = [i.type(inputs_embeds.dtype) |
|
if isinstance(i, torch.Tensor) else i for i in vision_hidden_states |
|
] |
|
|
|
|
|
|
|
orig_embeds_params = getattr(self, 'orig_embeds_params', None) |
|
|
|
new_input_embeds = [] |
|
cur_image_idx = 0 |
|
for cur_input_ids, cur_input_embeds in zip(data['input_ids'], inputs_embeds): |
|
if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0: |
|
|
|
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum() |
|
new_input_embeds.append(cur_input_embeds) |
|
continue |
|
|
|
if self.vision_config.use_im_start_end: |
|
cur_image_features = vision_hidden_states[cur_image_idx] |
|
num_patches = cur_image_features.shape[0] |
|
if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum(): |
|
raise ValueError( |
|
"The number of image start tokens and image end tokens should be the same.") |
|
image_start_tokens = torch.where( |
|
cur_input_ids == self.vision_config.im_start_token)[0] |
|
for image_start_token_pos in image_start_tokens: |
|
cur_image_features = vision_hidden_states[cur_image_idx].to( |
|
device=cur_input_embeds.device) |
|
num_patches = cur_image_features.shape[0] |
|
if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token: |
|
raise ValueError( |
|
"The image end token should follow the image start token.") |
|
if orig_embeds_params is not None: |
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, |
|
cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0) |
|
else: |
|
cur_new_input_embeds = torch.cat( |
|
(cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0) |
|
cur_image_idx += 1 |
|
new_input_embeds.append(cur_new_input_embeds) |
|
else: |
|
raise NotImplementedError |
|
inputs_embeds = torch.stack(new_input_embeds, dim=0) |
|
|
|
return inputs_embeds, vision_hidden_states |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
|
|
|
orig_embeds_params = getattr(self, 'orig_embeds_params', None) |
|
|
|
if inputs_embeds is None and past_key_values is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
vision_tower = getattr(self, 'vision_tower', None) |
|
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None: |
|
|
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_forward_out = self.get_vision_embedding(image.unsqueeze(0))[ |
|
0] |
|
image_features.append(image_forward_out) |
|
else: |
|
image_features = self.get_vision_embedding(images) |
|
|
|
dummy_image_features = torch.zeros( |
|
self.config.num_query, |
|
self.config.hidden_size, |
|
device=inputs_embeds.device, |
|
dtype=inputs_embeds.dtype) |
|
|
|
new_input_embeds = [] |
|
cur_image_idx = 0 |
|
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds): |
|
if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0: |
|
|
|
cur_input_embeds = cur_input_embeds + \ |
|
(0. * dummy_image_features).sum() |
|
new_input_embeds.append(cur_input_embeds) |
|
continue |
|
|
|
if self.vision_config.use_im_start_end: |
|
cur_image_features = image_features[cur_image_idx] |
|
num_patches = cur_image_features.shape[0] |
|
if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum(): |
|
raise ValueError( |
|
"The number of image start tokens and image end tokens should be the same.") |
|
image_start_tokens = torch.where( |
|
cur_input_ids == self.vision_config.im_start_token)[0] |
|
for image_start_token_pos in image_start_tokens: |
|
cur_image_features = image_features[cur_image_idx].to( |
|
device=cur_input_embeds.device) |
|
num_patches = cur_image_features.shape[0] |
|
if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token: |
|
raise ValueError( |
|
"The image end token should follow the image start token.") |
|
if orig_embeds_params is not None: |
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, |
|
cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0) |
|
else: |
|
cur_new_input_embeds = torch.cat( |
|
(cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0) |
|
cur_image_idx += 1 |
|
new_input_embeds.append(cur_new_input_embeds) |
|
else: |
|
raise NotImplementedError |
|
inputs_embeds = torch.stack(new_input_embeds, dim=0) |
|
input_ids = None |
|
|
|
return super(OmniLMMModel, self).forward( |
|
input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, use_cache=use_cache, |
|
output_attentions=output_attentions, output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
**kwargs |
|
) |
|
|
|
|
|
class OmniLMMForCausalLM(MistralForCausalLM): |
|
config_class = OmniLMMConfig |
|
|
|
def __init__(self, config, mm_vision_tower=None, tune_clip=True): |
|
super(MistralForCausalLM, self).__init__(config) |
|
self.model = OmniLMMModel( |
|
config, mm_vision_tower=mm_vision_tower, tune_clip=tune_clip) |
|
|
|
self.lm_head = nn.Linear( |
|
config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
images=images, |
|
**kwargs |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"images": kwargs.get("images", None), |
|
} |
|
) |
|
return model_inputs |
|
|
|
def generate_vllm( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
vision_hidden_states=None, |
|
return_vision_hidden_states=False, |
|
**kwargs |
|
): |
|
model_inputs = {'input_ids': input_ids} |
|
if vision_hidden_states is None: |
|
model_inputs['pixel_values'] = images |
|
else: |
|
model_inputs['vision_hidden_states'] = vision_hidden_states |
|
|
|
with torch.inference_mode(): |
|
inputs_embeds, vision_hidden_states = self.model.get_vllm_embedding(model_inputs) |
|
|
|
result = self.generate( |
|
inputs_embeds=inputs_embeds, |
|
**kwargs |
|
) |
|
|
|
if return_vision_hidden_states: |
|
return result, vision_hidden_states |
|
|
|
return result |
|
|
|
|
|
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device, |
|
tune_mm_mlp_adapter=False): |
|
self.model.vision_config.use_im_start_end = mm_use_im_start_end |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if mm_use_im_start_end: |
|
num_new_tokens = tokenizer.add_tokens( |
|
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
self.model.vision_config.im_start_token, self.model.vision_config.im_end_token = tokenizer.convert_tokens_to_ids( |
|
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
|
|
num_new_tokens = tokenizer.add_tokens( |
|
['<box>', '</box>', '<ref>', '</ref>', '<quad>', '</quad>'], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
if tune_mm_mlp_adapter: |
|
self.model.orig_embeds_params = [ |
|
self.get_input_embeddings().weight.data.clone().to(device=device)] |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
self.model.vision_config.im_patch_token = tokenizer.convert_tokens_to_ids( |
|
[DEFAULT_IMAGE_PATCH_TOKEN])[0] |
|
print(f'Tokenizer: {tokenizer}\n patch_token_id: {self.model.vision_config.im_patch_token}, visoin_config: {self.model.vision_config}', flush=True) |
|
|
|
|
|
|
|
AutoConfig.register("omnilmm", OmniLMMConfig) |
|
AutoModelForCausalLM.register(OmniLMMConfig, OmniLMMForCausalLM) |
|
|