File size: 4,512 Bytes
b7a2725
 
 
 
0b3063c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7a2725
fc3fcbf
8aa164c
 
 
 
 
 
 
 
 
24d6334
 
0b3063c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
license: apache-2.0
tags:
- finetuned
pipeline_tag: text-generation
model-index:
- name: deepseek-coder-6.7b-chat-and-function-calling
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 36.09
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat-and-function-calling
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 53.8
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat-and-function-calling
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 38.29
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat-and-function-calling
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 42.83
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat-and-function-calling
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 57.22
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat-and-function-calling
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 17.21
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-6.7b-chat-and-function-calling
      name: Open LLM Leaderboard
---
# deepseek-coder-6.7b-chat-and-function-calling
It was created by starting with the deepseek-coder-6.7b and training it on the open assistant dataset then training yhat on function calling. We have attached the wandb report in pdf form to view the training run at a glance.

# Reson
This model was fine tuned to allow it to work with the openai syntask and will return function when apperate.

# Templete
Us the following templete when interacting with the fine tuned model.

# Referrals
Run Pod - This is who I use to train th emodels on huggingface. If you use it we both get free crdits. - <a href="https://runpod.io?ref=kilq83n1" target="_blank" style="color: #3498db; text-decoration: none; font-weight: bold;">Visit Runpod's Website!</a>

Paypal - If you want to leave a tip, it is appecaheted. - <a href="https://paypal.me/OpenSourceTraining" target="_blank" style="color: #3498db; text-decoration: none; font-weight: bold;">Visit My Paypal!</a>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_AIGym__deepseek-coder-6.7b-chat-and-function-calling)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |40.91|
|AI2 Reasoning Challenge (25-Shot)|36.09|
|HellaSwag (10-Shot)              |53.80|
|MMLU (5-Shot)                    |38.29|
|TruthfulQA (0-shot)              |42.83|
|Winogrande (5-shot)              |57.22|
|GSM8k (5-shot)                   |17.21|