AIFunOver's picture
Upload vae_encoder/openvino_model.xml with huggingface_hub
a8ae673 verified
<?xml version="1.0"?>
<net name="Model4056" version="11">
<layers>
<layer id="0" name="sample" type="Parameter" version="opset1">
<data shape="?,3,?,?" element_type="f32" />
<output>
<port id="0" precision="FP32" names="sample">
<dim>-1</dim>
<dim>3</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="1" name="self.encoder.conv_in.weight" type="Const" version="opset1">
<data element_type="u8" shape="128, 3, 3, 3" offset="0" size="3456" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="2" name="Convert_3973690" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="3" name="self.encoder.conv_in.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="128, 1, 1, 1" offset="3456" size="128" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="4" name="Convert_3973693" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="5" name="self.encoder.conv_in.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="6" name="self.encoder.conv_in.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="128, 1, 1, 1" offset="3584" size="256" />
<output>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="7" name="self.encoder.conv_in.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="8" name="self.encoder.conv_in.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="9" name="__module.encoder.conv_in/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>3</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="10" name="__module.encoder.conv_in/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="3840" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="11" name="__module.encoder.conv_in/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="45,input.1">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="12" name="self.encoder.down_blocks.0.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="4352" size="512" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.0.norm1.weight">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="13" name="self.encoder.down_blocks.0.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="4864" size="512" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.0.norm1.bias">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="14" name="__module.encoder.down_blocks.0.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
</port>
<port id="2" precision="FP32">
<dim>128</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="59,input.3">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="15" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="60">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="16" name="self.encoder.down_blocks.0.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="u8" shape="128, 128, 3, 3" offset="5376" size="147456" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="17" name="Convert_3973602" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="18" name="self.encoder.down_blocks.0.resnets.0.conv1.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="128, 1, 1, 1" offset="152832" size="128" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="19" name="Convert_3973605" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="20" name="self.encoder.down_blocks.0.resnets.0.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="21" name="self.encoder.down_blocks.0.resnets.0.conv1.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="128, 1, 1, 1" offset="152960" size="256" />
<output>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="22" name="self.encoder.down_blocks.0.resnets.0.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="23" name="self.encoder.down_blocks.0.resnets.0.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="24" name="__module.encoder.down_blocks.0.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="25" name="__module.encoder.down_blocks.0.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="153216" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="26" name="__module.encoder.down_blocks.0.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="67,input.5">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="27" name="self.encoder.down_blocks.0.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="153728" size="512" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.0.norm2.weight">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="28" name="self.encoder.down_blocks.0.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="154240" size="512" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.0.norm2.bias">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="29" name="__module.encoder.down_blocks.0.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
</port>
<port id="2" precision="FP32">
<dim>128</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="70,input.7">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="30" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_1" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="71,input.9">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="31" name="self.encoder.down_blocks.0.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="u8" shape="128, 128, 3, 3" offset="154752" size="147456" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="32" name="Convert_3973613" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="33" name="self.encoder.down_blocks.0.resnets.0.conv2.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="128, 1, 1, 1" offset="302208" size="128" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="34" name="Convert_3973616" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="35" name="self.encoder.down_blocks.0.resnets.0.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="36" name="self.encoder.down_blocks.0.resnets.0.conv2.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="128, 1, 1, 1" offset="302336" size="256" />
<output>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="37" name="self.encoder.down_blocks.0.resnets.0.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="38" name="self.encoder.down_blocks.0.resnets.0.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="39" name="__module.encoder.down_blocks.0.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="40" name="__module.encoder.down_blocks.0.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="302592" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="41" name="__module.encoder.down_blocks.0.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="79,hidden_states.1">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="42" name="__module.encoder.down_blocks.0.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="80,81,input.11">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="43" name="self.encoder.down_blocks.0.resnets.1.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="303104" size="512" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.1.norm1.weight">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="44" name="self.encoder.down_blocks.0.resnets.1.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="303616" size="512" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.1.norm1.bias">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="45" name="__module.encoder.down_blocks.0.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
</port>
<port id="2" precision="FP32">
<dim>128</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="89,input.13">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="46" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_2" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="90">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="47" name="self.encoder.down_blocks.0.resnets.1.conv1.weight" type="Const" version="opset1">
<data element_type="u8" shape="128, 128, 3, 3" offset="304128" size="147456" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="48" name="Convert_3973624" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="49" name="self.encoder.down_blocks.0.resnets.1.conv1.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="128, 1, 1, 1" offset="451584" size="128" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="50" name="Convert_3973627" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="51" name="self.encoder.down_blocks.0.resnets.1.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="52" name="self.encoder.down_blocks.0.resnets.1.conv1.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="128, 1, 1, 1" offset="451712" size="256" />
<output>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="53" name="self.encoder.down_blocks.0.resnets.1.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="54" name="self.encoder.down_blocks.0.resnets.1.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="55" name="__module.encoder.down_blocks.0.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="56" name="__module.encoder.down_blocks.0.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="451968" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="57" name="__module.encoder.down_blocks.0.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="97,input.15">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="58" name="self.encoder.down_blocks.0.resnets.1.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="452480" size="512" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.1.norm2.weight">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="59" name="self.encoder.down_blocks.0.resnets.1.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="452992" size="512" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.1.norm2.bias">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="60" name="__module.encoder.down_blocks.0.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
</port>
<port id="2" precision="FP32">
<dim>128</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="100,input.17">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="61" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_3" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="101,input.19">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="62" name="self.encoder.down_blocks.0.resnets.1.conv2.weight" type="Const" version="opset1">
<data element_type="u8" shape="128, 128, 3, 3" offset="453504" size="147456" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="63" name="Convert_3973635" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="64" name="self.encoder.down_blocks.0.resnets.1.conv2.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="128, 1, 1, 1" offset="600960" size="128" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="65" name="Convert_3973638" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="66" name="self.encoder.down_blocks.0.resnets.1.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="67" name="self.encoder.down_blocks.0.resnets.1.conv2.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="128, 1, 1, 1" offset="601088" size="256" />
<output>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="68" name="self.encoder.down_blocks.0.resnets.1.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="69" name="self.encoder.down_blocks.0.resnets.1.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="70" name="__module.encoder.down_blocks.0.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="71" name="__module.encoder.down_blocks.0.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="601344" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="72" name="__module.encoder.down_blocks.0.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="109,hidden_states.3">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="73" name="__module.encoder.down_blocks.0.resnets.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="110,111,hidden_states.5">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="74" name="self.encoder.down_blocks.0.downsamplers.0.conv.weight" type="Const" version="opset1">
<data element_type="u8" shape="128, 128, 3, 3" offset="601856" size="147456" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="75" name="Convert_3973646" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="76" name="self.encoder.down_blocks.0.downsamplers.0.conv.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="128, 1, 1, 1" offset="749312" size="128" />
<output>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="77" name="Convert_3973649" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="78" name="self.encoder.down_blocks.0.downsamplers.0.conv.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="79" name="self.encoder.down_blocks.0.downsamplers.0.conv.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="128, 1, 1, 1" offset="749440" size="256" />
<output>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="80" name="self.encoder.down_blocks.0.downsamplers.0.conv.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="81" name="self.encoder.down_blocks.0.downsamplers.0.conv.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="82" name="__module.encoder.down_blocks.0.downsamplers.0.conv/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="83" name="__module.encoder.down_blocks.0.downsamplers.0.conv/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="749696" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="84" name="__module.encoder.down_blocks.0.downsamplers.0.conv/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="121,input.21">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="85" name="self.encoder.down_blocks.1.resnets.0.conv_shortcut.weight" type="Const" version="opset1">
<data element_type="u8" shape="256, 128, 1, 1" offset="750208" size="32768" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="86" name="Convert_3973679" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="87" name="self.encoder.down_blocks.1.resnets.0.conv_shortcut.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="256, 1, 1, 1" offset="782976" size="256" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="88" name="Convert_3973682" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="89" name="self.encoder.down_blocks.1.resnets.0.conv_shortcut.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="90" name="self.encoder.down_blocks.1.resnets.0.conv_shortcut.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="256, 1, 1, 1" offset="783232" size="512" />
<output>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="91" name="self.encoder.down_blocks.1.resnets.0.conv_shortcut.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="92" name="self.encoder.down_blocks.1.resnets.0.conv_shortcut.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="93" name="__module.encoder.down_blocks.1.resnets.0.conv_shortcut/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="94" name="__module.encoder.down_blocks.1.resnets.0.conv_shortcut/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="783744" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="95" name="__module.encoder.down_blocks.1.resnets.0.conv_shortcut/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="163,input_tensor.1">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="96" name="self.encoder.down_blocks.1.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="784768" size="512" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.1.resnets.0.norm1.weight">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="97" name="self.encoder.down_blocks.1.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="128" offset="785280" size="512" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.1.resnets.0.norm1.bias">
<dim>128</dim>
</port>
</output>
</layer>
<layer id="98" name="__module.encoder.down_blocks.1.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
</port>
<port id="2" precision="FP32">
<dim>128</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="136,input.23">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="99" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_4" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="137">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="100" name="self.encoder.down_blocks.1.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="u8" shape="256, 128, 3, 3" offset="785792" size="294912" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="101" name="Convert_3973547" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="102" name="self.encoder.down_blocks.1.resnets.0.conv1.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="256, 1, 1, 1" offset="1080704" size="256" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="103" name="Convert_3973550" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="104" name="self.encoder.down_blocks.1.resnets.0.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="105" name="self.encoder.down_blocks.1.resnets.0.conv1.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="256, 1, 1, 1" offset="1080960" size="512" />
<output>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="106" name="self.encoder.down_blocks.1.resnets.0.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="107" name="self.encoder.down_blocks.1.resnets.0.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="108" name="__module.encoder.down_blocks.1.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="109" name="__module.encoder.down_blocks.1.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="1081472" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="110" name="__module.encoder.down_blocks.1.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="144,input.25">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="111" name="self.encoder.down_blocks.1.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="1082496" size="1024" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.1.resnets.0.norm2.weight">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="112" name="self.encoder.down_blocks.1.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="1083520" size="1024" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.1.resnets.0.norm2.bias">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="113" name="__module.encoder.down_blocks.1.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
</port>
<port id="2" precision="FP32">
<dim>256</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="147,input.27">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="114" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_5" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="148,input.29">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="115" name="self.encoder.down_blocks.1.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="u8" shape="256, 256, 3, 3" offset="1084544" size="589824" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="116" name="Convert_3973503" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="117" name="self.encoder.down_blocks.1.resnets.0.conv2.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="256, 1, 1, 1" offset="1674368" size="256" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="118" name="Convert_3973506" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="119" name="self.encoder.down_blocks.1.resnets.0.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="120" name="self.encoder.down_blocks.1.resnets.0.conv2.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="256, 1, 1, 1" offset="1674624" size="512" />
<output>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="121" name="self.encoder.down_blocks.1.resnets.0.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="122" name="self.encoder.down_blocks.1.resnets.0.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="123" name="__module.encoder.down_blocks.1.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="124" name="__module.encoder.down_blocks.1.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="1675136" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="125" name="__module.encoder.down_blocks.1.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="156,hidden_states.9">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="126" name="__module.encoder.down_blocks.1.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="164,165,input.31">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="127" name="self.encoder.down_blocks.1.resnets.1.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="1676160" size="1024" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.1.resnets.1.norm1.weight">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="128" name="self.encoder.down_blocks.1.resnets.1.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="1677184" size="1024" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.1.resnets.1.norm1.bias">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="129" name="__module.encoder.down_blocks.1.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
</port>
<port id="2" precision="FP32">
<dim>256</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="173,input.33">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="130" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_6" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="174">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="131" name="self.encoder.down_blocks.1.resnets.1.conv1.weight" type="Const" version="opset1">
<data element_type="u8" shape="256, 256, 3, 3" offset="1678208" size="589824" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="132" name="Convert_3973514" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="133" name="self.encoder.down_blocks.1.resnets.1.conv1.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="256, 1, 1, 1" offset="2268032" size="256" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="134" name="Convert_3973517" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="135" name="self.encoder.down_blocks.1.resnets.1.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="136" name="self.encoder.down_blocks.1.resnets.1.conv1.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="256, 1, 1, 1" offset="2268288" size="512" />
<output>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="137" name="self.encoder.down_blocks.1.resnets.1.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="138" name="self.encoder.down_blocks.1.resnets.1.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="139" name="__module.encoder.down_blocks.1.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="140" name="__module.encoder.down_blocks.1.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="2268800" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="141" name="__module.encoder.down_blocks.1.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="181,input.35">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="142" name="self.encoder.down_blocks.1.resnets.1.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="2269824" size="1024" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.1.resnets.1.norm2.weight">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="143" name="self.encoder.down_blocks.1.resnets.1.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="2270848" size="1024" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.1.resnets.1.norm2.bias">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="144" name="__module.encoder.down_blocks.1.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
</port>
<port id="2" precision="FP32">
<dim>256</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="184,input.37">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="145" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_7" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="185,input.39">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="146" name="self.encoder.down_blocks.1.resnets.1.conv2.weight" type="Const" version="opset1">
<data element_type="u8" shape="256, 256, 3, 3" offset="2271872" size="589824" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="147" name="Convert_3973525" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="148" name="self.encoder.down_blocks.1.resnets.1.conv2.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="256, 1, 1, 1" offset="2861696" size="256" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="149" name="Convert_3973528" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="150" name="self.encoder.down_blocks.1.resnets.1.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="151" name="self.encoder.down_blocks.1.resnets.1.conv2.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="256, 1, 1, 1" offset="2861952" size="512" />
<output>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="152" name="self.encoder.down_blocks.1.resnets.1.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="153" name="self.encoder.down_blocks.1.resnets.1.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="154" name="__module.encoder.down_blocks.1.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="155" name="__module.encoder.down_blocks.1.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="2862464" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="156" name="__module.encoder.down_blocks.1.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="193,hidden_states.11">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="157" name="__module.encoder.down_blocks.1.resnets.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="194,195,hidden_states.13">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="158" name="self.encoder.down_blocks.1.downsamplers.0.conv.weight" type="Const" version="opset1">
<data element_type="u8" shape="256, 256, 3, 3" offset="2863488" size="589824" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="159" name="Convert_3973536" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="160" name="self.encoder.down_blocks.1.downsamplers.0.conv.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="256, 1, 1, 1" offset="3453312" size="256" />
<output>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="161" name="Convert_3973539" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="162" name="self.encoder.down_blocks.1.downsamplers.0.conv.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="163" name="self.encoder.down_blocks.1.downsamplers.0.conv.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="256, 1, 1, 1" offset="3453568" size="512" />
<output>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="164" name="self.encoder.down_blocks.1.downsamplers.0.conv.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="165" name="self.encoder.down_blocks.1.downsamplers.0.conv.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="166" name="__module.encoder.down_blocks.1.downsamplers.0.conv/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="167" name="__module.encoder.down_blocks.1.downsamplers.0.conv/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="3454080" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="168" name="__module.encoder.down_blocks.1.downsamplers.0.conv/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="205,input.41">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="169" name="self.encoder.down_blocks.2.resnets.0.conv_shortcut.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 256, 1, 1" offset="3455104" size="131072" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="170" name="Convert_3973668" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="171" name="self.encoder.down_blocks.2.resnets.0.conv_shortcut.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="3586176" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="172" name="Convert_3973671" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="173" name="self.encoder.down_blocks.2.resnets.0.conv_shortcut.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="174" name="self.encoder.down_blocks.2.resnets.0.conv_shortcut.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="3586688" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="175" name="self.encoder.down_blocks.2.resnets.0.conv_shortcut.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="176" name="self.encoder.down_blocks.2.resnets.0.conv_shortcut.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="177" name="__module.encoder.down_blocks.2.resnets.0.conv_shortcut/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="178" name="__module.encoder.down_blocks.2.resnets.0.conv_shortcut/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="3587712" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="179" name="__module.encoder.down_blocks.2.resnets.0.conv_shortcut/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="247,input_tensor">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="180" name="self.encoder.down_blocks.2.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="3589760" size="1024" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.2.resnets.0.norm1.weight">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="181" name="self.encoder.down_blocks.2.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="256" offset="3590784" size="1024" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.2.resnets.0.norm1.bias">
<dim>256</dim>
</port>
</output>
</layer>
<layer id="182" name="__module.encoder.down_blocks.2.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
</port>
<port id="2" precision="FP32">
<dim>256</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="220,input.43">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="183" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_8" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="221">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="184" name="self.encoder.down_blocks.2.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 256, 3, 3" offset="3591808" size="1179648" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="185" name="Convert_3973492" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="186" name="self.encoder.down_blocks.2.resnets.0.conv1.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="4771456" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="187" name="Convert_3973495" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="188" name="self.encoder.down_blocks.2.resnets.0.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="189" name="self.encoder.down_blocks.2.resnets.0.conv1.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="4771968" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="190" name="self.encoder.down_blocks.2.resnets.0.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="191" name="self.encoder.down_blocks.2.resnets.0.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="192" name="__module.encoder.down_blocks.2.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="193" name="__module.encoder.down_blocks.2.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="4772992" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="194" name="__module.encoder.down_blocks.2.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="228,input.45">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="195" name="self.encoder.down_blocks.2.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="4775040" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.2.resnets.0.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="196" name="self.encoder.down_blocks.2.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="4777088" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.2.resnets.0.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="197" name="__module.encoder.down_blocks.2.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="231,input.47">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="198" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_9" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="232,input.49">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="199" name="self.encoder.down_blocks.2.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="4779136" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="200" name="Convert_3973360" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="201" name="self.encoder.down_blocks.2.resnets.0.conv2.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="7138432" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="202" name="Convert_3973363" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="203" name="self.encoder.down_blocks.2.resnets.0.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="204" name="self.encoder.down_blocks.2.resnets.0.conv2.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="7138944" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="205" name="self.encoder.down_blocks.2.resnets.0.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="206" name="self.encoder.down_blocks.2.resnets.0.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="207" name="__module.encoder.down_blocks.2.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="208" name="__module.encoder.down_blocks.2.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="7139968" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="209" name="__module.encoder.down_blocks.2.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="240,hidden_states.17">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="210" name="__module.encoder.down_blocks.2.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="248,249,input.51">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="211" name="self.encoder.down_blocks.2.resnets.1.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="7142016" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.2.resnets.1.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="212" name="self.encoder.down_blocks.2.resnets.1.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="7144064" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.2.resnets.1.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="213" name="__module.encoder.down_blocks.2.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="257,input.53">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="214" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_10" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="258">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="215" name="self.encoder.down_blocks.2.resnets.1.conv1.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="7146112" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="216" name="Convert_3973371" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="217" name="self.encoder.down_blocks.2.resnets.1.conv1.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="9505408" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="218" name="Convert_3973374" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="219" name="self.encoder.down_blocks.2.resnets.1.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="220" name="self.encoder.down_blocks.2.resnets.1.conv1.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="9505920" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="221" name="self.encoder.down_blocks.2.resnets.1.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="222" name="self.encoder.down_blocks.2.resnets.1.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="223" name="__module.encoder.down_blocks.2.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="224" name="__module.encoder.down_blocks.2.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="9506944" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="225" name="__module.encoder.down_blocks.2.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="265,input.55">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="226" name="self.encoder.down_blocks.2.resnets.1.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="9508992" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.2.resnets.1.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="227" name="self.encoder.down_blocks.2.resnets.1.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="9511040" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.2.resnets.1.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="228" name="__module.encoder.down_blocks.2.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="268,input.57">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="229" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_11" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="269,input.59">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="230" name="self.encoder.down_blocks.2.resnets.1.conv2.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="9513088" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="231" name="Convert_3973382" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="232" name="self.encoder.down_blocks.2.resnets.1.conv2.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="11872384" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="233" name="Convert_3973385" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="234" name="self.encoder.down_blocks.2.resnets.1.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="235" name="self.encoder.down_blocks.2.resnets.1.conv2.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="11872896" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="236" name="self.encoder.down_blocks.2.resnets.1.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="237" name="self.encoder.down_blocks.2.resnets.1.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="238" name="__module.encoder.down_blocks.2.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="239" name="__module.encoder.down_blocks.2.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="11873920" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="240" name="__module.encoder.down_blocks.2.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="277,hidden_states.19">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="241" name="__module.encoder.down_blocks.2.resnets.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="278,279,hidden_states.21">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="242" name="self.encoder.down_blocks.2.downsamplers.0.conv.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="11875968" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="243" name="Convert_3973393" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="244" name="self.encoder.down_blocks.2.downsamplers.0.conv.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="14235264" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="245" name="Convert_3973396" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="246" name="self.encoder.down_blocks.2.downsamplers.0.conv.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="247" name="self.encoder.down_blocks.2.downsamplers.0.conv.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="14235776" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="248" name="self.encoder.down_blocks.2.downsamplers.0.conv.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="249" name="self.encoder.down_blocks.2.downsamplers.0.conv.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="250" name="__module.encoder.down_blocks.2.downsamplers.0.conv/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="251" name="__module.encoder.down_blocks.2.downsamplers.0.conv/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="14236800" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="252" name="__module.encoder.down_blocks.2.downsamplers.0.conv/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="289,input.61">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="253" name="self.encoder.down_blocks.3.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="14238848" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.3.resnets.0.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="254" name="self.encoder.down_blocks.3.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="14240896" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.3.resnets.0.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="255" name="__module.encoder.down_blocks.3.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="301,input.63">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="256" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_12" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="302">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="257" name="self.encoder.down_blocks.3.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="14242944" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="258" name="Convert_3973404" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="259" name="self.encoder.down_blocks.3.resnets.0.conv1.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="16602240" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="260" name="Convert_3973407" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="261" name="self.encoder.down_blocks.3.resnets.0.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="262" name="self.encoder.down_blocks.3.resnets.0.conv1.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="16602752" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="263" name="self.encoder.down_blocks.3.resnets.0.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="264" name="self.encoder.down_blocks.3.resnets.0.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="265" name="__module.encoder.down_blocks.3.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="266" name="__module.encoder.down_blocks.3.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="16603776" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="267" name="__module.encoder.down_blocks.3.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="309,input.65">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="268" name="self.encoder.down_blocks.3.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="16605824" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.3.resnets.0.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="269" name="self.encoder.down_blocks.3.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="16607872" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.3.resnets.0.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="270" name="__module.encoder.down_blocks.3.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="312,input.67">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="271" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_13" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="313,input.69">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="272" name="self.encoder.down_blocks.3.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="16609920" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="273" name="Convert_3973415" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="274" name="self.encoder.down_blocks.3.resnets.0.conv2.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="18969216" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="275" name="Convert_3973418" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="276" name="self.encoder.down_blocks.3.resnets.0.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="277" name="self.encoder.down_blocks.3.resnets.0.conv2.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="18969728" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="278" name="self.encoder.down_blocks.3.resnets.0.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="279" name="self.encoder.down_blocks.3.resnets.0.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="280" name="__module.encoder.down_blocks.3.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="281" name="__module.encoder.down_blocks.3.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="18970752" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="282" name="__module.encoder.down_blocks.3.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="321,hidden_states.25">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="283" name="__module.encoder.down_blocks.3.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="322,323,input.71">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="284" name="self.encoder.down_blocks.3.resnets.1.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="18972800" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.3.resnets.1.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="285" name="self.encoder.down_blocks.3.resnets.1.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="18974848" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.3.resnets.1.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="286" name="__module.encoder.down_blocks.3.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="331,input.73">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="287" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_14" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="332">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="288" name="self.encoder.down_blocks.3.resnets.1.conv1.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="18976896" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="289" name="Convert_3973426" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="290" name="self.encoder.down_blocks.3.resnets.1.conv1.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="21336192" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="291" name="Convert_3973429" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="292" name="self.encoder.down_blocks.3.resnets.1.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="293" name="self.encoder.down_blocks.3.resnets.1.conv1.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="21336704" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="294" name="self.encoder.down_blocks.3.resnets.1.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="295" name="self.encoder.down_blocks.3.resnets.1.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="296" name="__module.encoder.down_blocks.3.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="297" name="__module.encoder.down_blocks.3.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="21337728" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="298" name="__module.encoder.down_blocks.3.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="339,input.75">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="299" name="self.encoder.down_blocks.3.resnets.1.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="21339776" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.3.resnets.1.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="300" name="self.encoder.down_blocks.3.resnets.1.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="21341824" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.3.resnets.1.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="301" name="__module.encoder.down_blocks.3.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="342,input.77">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="302" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_15" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="343,input.79">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="303" name="self.encoder.down_blocks.3.resnets.1.conv2.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="21343872" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="304" name="Convert_3973437" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="305" name="self.encoder.down_blocks.3.resnets.1.conv2.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="23703168" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="306" name="Convert_3973440" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="307" name="self.encoder.down_blocks.3.resnets.1.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="308" name="self.encoder.down_blocks.3.resnets.1.conv2.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="23703680" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="309" name="self.encoder.down_blocks.3.resnets.1.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="310" name="self.encoder.down_blocks.3.resnets.1.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="311" name="__module.encoder.down_blocks.3.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="312" name="__module.encoder.down_blocks.3.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="23704704" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="313" name="__module.encoder.down_blocks.3.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="351,hidden_states.27">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="314" name="__module.encoder.down_blocks.3.resnets.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="352,353,input.81">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="315" name="self.encoder.mid_block.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="23706752" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.0.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="316" name="self.encoder.mid_block.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="23708800" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.0.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="317" name="__module.encoder.mid_block.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="367,input.83">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="318" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_16" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="368">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="319" name="self.encoder.mid_block.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="23710848" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="320" name="Convert_3973448" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="321" name="self.encoder.mid_block.resnets.0.conv1.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="26070144" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="322" name="Convert_3973451" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="323" name="self.encoder.mid_block.resnets.0.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="324" name="self.encoder.mid_block.resnets.0.conv1.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="26070656" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="325" name="self.encoder.mid_block.resnets.0.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="326" name="self.encoder.mid_block.resnets.0.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="327" name="__module.encoder.mid_block.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="328" name="__module.encoder.mid_block.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="26071680" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="329" name="__module.encoder.mid_block.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="375,input.85">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="330" name="self.encoder.mid_block.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="26073728" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.0.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="331" name="self.encoder.mid_block.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="26075776" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.0.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="332" name="__module.encoder.mid_block.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="378,input.87">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="333" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_17" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="379,input.89">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="334" name="self.encoder.mid_block.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="26077824" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="335" name="Convert_3973459" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="336" name="self.encoder.mid_block.resnets.0.conv2.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="28437120" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="337" name="Convert_3973462" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="338" name="self.encoder.mid_block.resnets.0.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="339" name="self.encoder.mid_block.resnets.0.conv2.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="28437632" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="340" name="self.encoder.mid_block.resnets.0.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="341" name="self.encoder.mid_block.resnets.0.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="342" name="__module.encoder.mid_block.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="343" name="__module.encoder.mid_block.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="28438656" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="344" name="__module.encoder.mid_block.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="387,hidden_states.29">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="345" name="__module.encoder.mid_block.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="388,389,hidden_states.31">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="346" name="Constant_3709789" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="28440704" size="24" />
<output>
<port id="0" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="347" name="__module.encoder.mid_block.attentions.0/aten::view/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="405">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="348" name="__module.encoder.mid_block.attentions.0/aten::transpose/Constant" type="Const" version="opset1">
<data element_type="i32" shape="3" offset="28440728" size="12" />
<output>
<port id="0" precision="I32">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="349" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="I32">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="406,hidden_states.33">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="350" name="__module.encoder.mid_block.attentions.0/aten::transpose/Constant_1" type="Const" version="opset1">
<data element_type="i32" shape="3" offset="28440728" size="12" />
<output>
<port id="0" precision="I32">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="351" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_1" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I32">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="408,input.91">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="352" name="self.encoder.mid_block.attentions.0.group_norm.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="28440740" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.attentions.0.group_norm.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="353" name="self.encoder.mid_block.attentions.0.group_norm.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="28442788" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.attentions.0.group_norm.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="354" name="__module.encoder.mid_block.attentions.0.group_norm/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="411">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="355" name="self.encoder.mid_block.attentions.0.to_q.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512" offset="28444836" size="262144" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="356" name="Convert_3973580" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="357" name="self.encoder.mid_block.attentions.0.to_q.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1" offset="28706980" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="358" name="Convert_3973583" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="359" name="self.encoder.mid_block.attentions.0.to_q.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="360" name="self.encoder.mid_block.attentions.0.to_q.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1" offset="28707492" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="361" name="self.encoder.mid_block.attentions.0.to_q.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="362" name="self.encoder.mid_block.attentions.0.to_q.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="363" name="__module.encoder.mid_block.attentions.0.to_q/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="true" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="364" name="Constant_3709674" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 512" offset="28708516" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="365" name="__module.encoder.mid_block.attentions.0.to_q/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="415,query">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="366" name="Constant_3709790" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="28710564" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="367" name="__module.encoder.mid_block.attentions.0/aten::view/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="429">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="368" name="Constant_3709621" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="28710596" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="369" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_3" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="430">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="370" name="self.encoder.mid_block.attentions.0.to_k.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512" offset="28710628" size="262144" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="371" name="Convert_3973569" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="372" name="self.encoder.mid_block.attentions.0.to_k.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1" offset="28972772" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="373" name="Convert_3973572" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="374" name="self.encoder.mid_block.attentions.0.to_k.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="375" name="self.encoder.mid_block.attentions.0.to_k.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1" offset="28973284" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="376" name="self.encoder.mid_block.attentions.0.to_k.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="377" name="self.encoder.mid_block.attentions.0.to_k.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="378" name="__module.encoder.mid_block.attentions.0.to_k/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="true" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="379" name="Constant_3709675" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 512" offset="28974308" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="380" name="__module.encoder.mid_block.attentions.0.to_k/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="418,key">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="381" name="Constant_3709791" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="28710564" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="382" name="__module.encoder.mid_block.attentions.0/aten::view/Reshape_2" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="432">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="383" name="Constant_3709625" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="28710596" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="384" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_4" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="433">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="385" name="self.encoder.mid_block.attentions.0.to_v.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512" offset="28976356" size="262144" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="386" name="Convert_3973558" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="387" name="self.encoder.mid_block.attentions.0.to_v.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1" offset="29238500" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="388" name="Convert_3973561" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="389" name="self.encoder.mid_block.attentions.0.to_v.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="390" name="self.encoder.mid_block.attentions.0.to_v.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1" offset="29239012" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="391" name="self.encoder.mid_block.attentions.0.to_v.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="392" name="self.encoder.mid_block.attentions.0.to_v.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="393" name="__module.encoder.mid_block.attentions.0.to_v/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="true" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="394" name="Constant_3709676" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 512" offset="29240036" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="395" name="__module.encoder.mid_block.attentions.0.to_v/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="421,value">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="396" name="Constant_3709792" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="28710564" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="397" name="__module.encoder.mid_block.attentions.0/aten::view/Reshape_3" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="435">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="398" name="Constant_3709629" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="28710596" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="399" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_5" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="436">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="400" name="__module.encoder.mid_block.attentions.0/aten::scaled_dot_product_attention/ScaledDotProductAttention" type="ScaledDotProductAttention" version="opset13">
<data causal="false" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="437,hidden_states.35">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="401" name="Constant_3709631" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="29242084" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="402" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_6" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="438">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="403" name="Constant_3709793" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="29242116" size="24" />
<output>
<port id="0" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="404" name="__module.encoder.mid_block.attentions.0/aten::reshape/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="442,443,hidden_states.37">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="405" name="self.encoder.mid_block.attentions.0.to_out.0.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512" offset="29242140" size="262144" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="406" name="Convert_3973591" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="407" name="self.encoder.mid_block.attentions.0.to_out.0.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1" offset="29504284" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="408" name="Convert_3973594" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="409" name="self.encoder.mid_block.attentions.0.to_out.0.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="410" name="self.encoder.mid_block.attentions.0.to_out.0.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1" offset="29504796" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="411" name="self.encoder.mid_block.attentions.0.to_out.0.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="412" name="self.encoder.mid_block.attentions.0.to_out.0.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="413" name="__module.encoder.mid_block.attentions.0.to_out.0/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="414" name="Constant_3709677" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 512" offset="29505820" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="415" name="__module.encoder.mid_block.attentions.0.to_out.0/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>512</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="446,input.93">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
</output>
</layer>
<layer id="416" name="__module.encoder.mid_block.attentions.0/aten::transpose/Constant_7" type="Const" version="opset1">
<data element_type="i32" shape="3" offset="28440728" size="12" />
<output>
<port id="0" precision="I32">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="417" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_7" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>512</dim>
</port>
<port id="1" precision="I32">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="448">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="418" name="__module.encoder.mid_block.attentions.0/aten::size/ShapeOf" type="ShapeOf" version="opset3">
<data output_type="i64" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="419" name="__module.encoder.mid_block.attentions.0/aten::reshape/Reshape_1" type="Reshape" version="opset1">
<data special_zero="false" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="450,hidden_states.41">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="420" name="__module.encoder.mid_block.attentions.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="451,452,hidden_states.43,input.95">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="421" name="self.encoder.mid_block.resnets.1.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="29507868" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.1.norm1.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="422" name="self.encoder.mid_block.resnets.1.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="29509916" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.1.norm1.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="423" name="__module.encoder.mid_block.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="460,input.97">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="424" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_18" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="461">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="425" name="self.encoder.mid_block.resnets.1.conv1.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="29511964" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="426" name="Convert_3973470" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="427" name="self.encoder.mid_block.resnets.1.conv1.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="31871260" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="428" name="Convert_3973473" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="429" name="self.encoder.mid_block.resnets.1.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="430" name="self.encoder.mid_block.resnets.1.conv1.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="31871772" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="431" name="self.encoder.mid_block.resnets.1.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="432" name="self.encoder.mid_block.resnets.1.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="433" name="__module.encoder.mid_block.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="434" name="__module.encoder.mid_block.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="31872796" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="435" name="__module.encoder.mid_block.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="468,input.99">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="436" name="self.encoder.mid_block.resnets.1.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="31874844" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.1.norm2.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="437" name="self.encoder.mid_block.resnets.1.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="31876892" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.1.norm2.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="438" name="__module.encoder.mid_block.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="471,input.101">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="439" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_19" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="472,input.103">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="440" name="self.encoder.mid_block.resnets.1.conv2.weight" type="Const" version="opset1">
<data element_type="u8" shape="512, 512, 3, 3" offset="31878940" size="2359296" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="441" name="Convert_3973481" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="442" name="self.encoder.mid_block.resnets.1.conv2.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="512, 1, 1, 1" offset="34238236" size="512" />
<output>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="443" name="Convert_3973484" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="444" name="self.encoder.mid_block.resnets.1.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="445" name="self.encoder.mid_block.resnets.1.conv2.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="512, 1, 1, 1" offset="34238748" size="1024" />
<output>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="446" name="self.encoder.mid_block.resnets.1.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="447" name="self.encoder.mid_block.resnets.1.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="448" name="__module.encoder.mid_block.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="449" name="__module.encoder.mid_block.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="34239772" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="450" name="__module.encoder.mid_block.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="480,hidden_states">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="451" name="__module.encoder.mid_block.resnets.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="481,482,input.105">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="452" name="self.encoder.conv_norm_out.weight" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="34241820" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.conv_norm_out.weight">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="453" name="self.encoder.conv_norm_out.bias" type="Const" version="opset1">
<data element_type="f32" shape="512" offset="34243868" size="2048" />
<output>
<port id="0" precision="FP32" names="self.encoder.conv_norm_out.bias">
<dim>512</dim>
</port>
</output>
</layer>
<layer id="454" name="__module.encoder.conv_norm_out/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="32" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
</port>
<port id="2" precision="FP32">
<dim>512</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="485,input">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="455" name="__module.encoder.conv_act/aten::silu/Swish" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="486">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="456" name="self.encoder.conv_out.weight" type="Const" version="opset1">
<data element_type="u8" shape="32, 512, 3, 3" offset="34245916" size="147456" />
<output>
<port id="0" precision="U8">
<dim>32</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="457" name="Convert_3973657" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>32</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>32</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="458" name="self.encoder.conv_out.weight/zero_point" type="Const" version="opset1">
<data element_type="u8" shape="32, 1, 1, 1" offset="34393372" size="32" />
<output>
<port id="0" precision="U8">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="459" name="Convert_3973660" type="Convert" version="opset1">
<data destination_type="f16" />
<input>
<port id="0" precision="U8">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="FP16">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="460" name="self.encoder.conv_out.weight/zero_point/subtract" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>32</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>32</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="461" name="self.encoder.conv_out.weight/scale" type="Const" version="opset1">
<data element_type="f16" shape="32, 1, 1, 1" offset="34393404" size="64" />
<output>
<port id="0" precision="FP16">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="462" name="self.encoder.conv_out.weight/fq_weights_1" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP16">
<dim>32</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP16">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP16">
<dim>32</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="463" name="self.encoder.conv_out.weight/fq_weights_1/convert" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="FP16">
<dim>32</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="464" name="__module.encoder.conv_out/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="465" name="__module.encoder.conv_out/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1, 1" offset="34393468" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="466" name="__module.encoder.conv_out/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="latent_parameters">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="467" name="Result_3705915" type="Result" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="9" to-port="0" />
<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
<edge from-layer="2" from-port="1" to-layer="5" to-port="0" />
<edge from-layer="3" from-port="0" to-layer="4" to-port="0" />
<edge from-layer="4" from-port="1" to-layer="5" to-port="1" />
<edge from-layer="5" from-port="2" to-layer="7" to-port="0" />
<edge from-layer="6" from-port="0" to-layer="7" to-port="1" />
<edge from-layer="7" from-port="2" to-layer="8" to-port="0" />
<edge from-layer="8" from-port="1" to-layer="9" to-port="1" />
<edge from-layer="9" from-port="2" to-layer="11" to-port="0" />
<edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
<edge from-layer="11" from-port="2" to-layer="14" to-port="0" />
<edge from-layer="11" from-port="2" to-layer="42" to-port="0" />
<edge from-layer="12" from-port="0" to-layer="14" to-port="1" />
<edge from-layer="13" from-port="0" to-layer="14" to-port="2" />
<edge from-layer="14" from-port="3" to-layer="15" to-port="0" />
<edge from-layer="15" from-port="1" to-layer="24" to-port="0" />
<edge from-layer="16" from-port="0" to-layer="17" to-port="0" />
<edge from-layer="17" from-port="1" to-layer="20" to-port="0" />
<edge from-layer="18" from-port="0" to-layer="19" to-port="0" />
<edge from-layer="19" from-port="1" to-layer="20" to-port="1" />
<edge from-layer="20" from-port="2" to-layer="22" to-port="0" />
<edge from-layer="21" from-port="0" to-layer="22" to-port="1" />
<edge from-layer="22" from-port="2" to-layer="23" to-port="0" />
<edge from-layer="23" from-port="1" to-layer="24" to-port="1" />
<edge from-layer="24" from-port="2" to-layer="26" to-port="0" />
<edge from-layer="25" from-port="0" to-layer="26" to-port="1" />
<edge from-layer="26" from-port="2" to-layer="29" to-port="0" />
<edge from-layer="27" from-port="0" to-layer="29" to-port="1" />
<edge from-layer="28" from-port="0" to-layer="29" to-port="2" />
<edge from-layer="29" from-port="3" to-layer="30" to-port="0" />
<edge from-layer="30" from-port="1" to-layer="39" to-port="0" />
<edge from-layer="31" from-port="0" to-layer="32" to-port="0" />
<edge from-layer="32" from-port="1" to-layer="35" to-port="0" />
<edge from-layer="33" from-port="0" to-layer="34" to-port="0" />
<edge from-layer="34" from-port="1" to-layer="35" to-port="1" />
<edge from-layer="35" from-port="2" to-layer="37" to-port="0" />
<edge from-layer="36" from-port="0" to-layer="37" to-port="1" />
<edge from-layer="37" from-port="2" to-layer="38" to-port="0" />
<edge from-layer="38" from-port="1" to-layer="39" to-port="1" />
<edge from-layer="39" from-port="2" to-layer="41" to-port="0" />
<edge from-layer="40" from-port="0" to-layer="41" to-port="1" />
<edge from-layer="41" from-port="2" to-layer="42" to-port="1" />
<edge from-layer="42" from-port="2" to-layer="45" to-port="0" />
<edge from-layer="42" from-port="2" to-layer="73" to-port="0" />
<edge from-layer="43" from-port="0" to-layer="45" to-port="1" />
<edge from-layer="44" from-port="0" to-layer="45" to-port="2" />
<edge from-layer="45" from-port="3" to-layer="46" to-port="0" />
<edge from-layer="46" from-port="1" to-layer="55" to-port="0" />
<edge from-layer="47" from-port="0" to-layer="48" to-port="0" />
<edge from-layer="48" from-port="1" to-layer="51" to-port="0" />
<edge from-layer="49" from-port="0" to-layer="50" to-port="0" />
<edge from-layer="50" from-port="1" to-layer="51" to-port="1" />
<edge from-layer="51" from-port="2" to-layer="53" to-port="0" />
<edge from-layer="52" from-port="0" to-layer="53" to-port="1" />
<edge from-layer="53" from-port="2" to-layer="54" to-port="0" />
<edge from-layer="54" from-port="1" to-layer="55" to-port="1" />
<edge from-layer="55" from-port="2" to-layer="57" to-port="0" />
<edge from-layer="56" from-port="0" to-layer="57" to-port="1" />
<edge from-layer="57" from-port="2" to-layer="60" to-port="0" />
<edge from-layer="58" from-port="0" to-layer="60" to-port="1" />
<edge from-layer="59" from-port="0" to-layer="60" to-port="2" />
<edge from-layer="60" from-port="3" to-layer="61" to-port="0" />
<edge from-layer="61" from-port="1" to-layer="70" to-port="0" />
<edge from-layer="62" from-port="0" to-layer="63" to-port="0" />
<edge from-layer="63" from-port="1" to-layer="66" to-port="0" />
<edge from-layer="64" from-port="0" to-layer="65" to-port="0" />
<edge from-layer="65" from-port="1" to-layer="66" to-port="1" />
<edge from-layer="66" from-port="2" to-layer="68" to-port="0" />
<edge from-layer="67" from-port="0" to-layer="68" to-port="1" />
<edge from-layer="68" from-port="2" to-layer="69" to-port="0" />
<edge from-layer="69" from-port="1" to-layer="70" to-port="1" />
<edge from-layer="70" from-port="2" to-layer="72" to-port="0" />
<edge from-layer="71" from-port="0" to-layer="72" to-port="1" />
<edge from-layer="72" from-port="2" to-layer="73" to-port="1" />
<edge from-layer="73" from-port="2" to-layer="82" to-port="0" />
<edge from-layer="74" from-port="0" to-layer="75" to-port="0" />
<edge from-layer="75" from-port="1" to-layer="78" to-port="0" />
<edge from-layer="76" from-port="0" to-layer="77" to-port="0" />
<edge from-layer="77" from-port="1" to-layer="78" to-port="1" />
<edge from-layer="78" from-port="2" to-layer="80" to-port="0" />
<edge from-layer="79" from-port="0" to-layer="80" to-port="1" />
<edge from-layer="80" from-port="2" to-layer="81" to-port="0" />
<edge from-layer="81" from-port="1" to-layer="82" to-port="1" />
<edge from-layer="82" from-port="2" to-layer="84" to-port="0" />
<edge from-layer="83" from-port="0" to-layer="84" to-port="1" />
<edge from-layer="84" from-port="2" to-layer="93" to-port="0" />
<edge from-layer="84" from-port="2" to-layer="98" to-port="0" />
<edge from-layer="85" from-port="0" to-layer="86" to-port="0" />
<edge from-layer="86" from-port="1" to-layer="89" to-port="0" />
<edge from-layer="87" from-port="0" to-layer="88" to-port="0" />
<edge from-layer="88" from-port="1" to-layer="89" to-port="1" />
<edge from-layer="89" from-port="2" to-layer="91" to-port="0" />
<edge from-layer="90" from-port="0" to-layer="91" to-port="1" />
<edge from-layer="91" from-port="2" to-layer="92" to-port="0" />
<edge from-layer="92" from-port="1" to-layer="93" to-port="1" />
<edge from-layer="93" from-port="2" to-layer="95" to-port="0" />
<edge from-layer="94" from-port="0" to-layer="95" to-port="1" />
<edge from-layer="95" from-port="2" to-layer="126" to-port="0" />
<edge from-layer="96" from-port="0" to-layer="98" to-port="1" />
<edge from-layer="97" from-port="0" to-layer="98" to-port="2" />
<edge from-layer="98" from-port="3" to-layer="99" to-port="0" />
<edge from-layer="99" from-port="1" to-layer="108" to-port="0" />
<edge from-layer="100" from-port="0" to-layer="101" to-port="0" />
<edge from-layer="101" from-port="1" to-layer="104" to-port="0" />
<edge from-layer="102" from-port="0" to-layer="103" to-port="0" />
<edge from-layer="103" from-port="1" to-layer="104" to-port="1" />
<edge from-layer="104" from-port="2" to-layer="106" to-port="0" />
<edge from-layer="105" from-port="0" to-layer="106" to-port="1" />
<edge from-layer="106" from-port="2" to-layer="107" to-port="0" />
<edge from-layer="107" from-port="1" to-layer="108" to-port="1" />
<edge from-layer="108" from-port="2" to-layer="110" to-port="0" />
<edge from-layer="109" from-port="0" to-layer="110" to-port="1" />
<edge from-layer="110" from-port="2" to-layer="113" to-port="0" />
<edge from-layer="111" from-port="0" to-layer="113" to-port="1" />
<edge from-layer="112" from-port="0" to-layer="113" to-port="2" />
<edge from-layer="113" from-port="3" to-layer="114" to-port="0" />
<edge from-layer="114" from-port="1" to-layer="123" to-port="0" />
<edge from-layer="115" from-port="0" to-layer="116" to-port="0" />
<edge from-layer="116" from-port="1" to-layer="119" to-port="0" />
<edge from-layer="117" from-port="0" to-layer="118" to-port="0" />
<edge from-layer="118" from-port="1" to-layer="119" to-port="1" />
<edge from-layer="119" from-port="2" to-layer="121" to-port="0" />
<edge from-layer="120" from-port="0" to-layer="121" to-port="1" />
<edge from-layer="121" from-port="2" to-layer="122" to-port="0" />
<edge from-layer="122" from-port="1" to-layer="123" to-port="1" />
<edge from-layer="123" from-port="2" to-layer="125" to-port="0" />
<edge from-layer="124" from-port="0" to-layer="125" to-port="1" />
<edge from-layer="125" from-port="2" to-layer="126" to-port="1" />
<edge from-layer="126" from-port="2" to-layer="129" to-port="0" />
<edge from-layer="126" from-port="2" to-layer="157" to-port="0" />
<edge from-layer="127" from-port="0" to-layer="129" to-port="1" />
<edge from-layer="128" from-port="0" to-layer="129" to-port="2" />
<edge from-layer="129" from-port="3" to-layer="130" to-port="0" />
<edge from-layer="130" from-port="1" to-layer="139" to-port="0" />
<edge from-layer="131" from-port="0" to-layer="132" to-port="0" />
<edge from-layer="132" from-port="1" to-layer="135" to-port="0" />
<edge from-layer="133" from-port="0" to-layer="134" to-port="0" />
<edge from-layer="134" from-port="1" to-layer="135" to-port="1" />
<edge from-layer="135" from-port="2" to-layer="137" to-port="0" />
<edge from-layer="136" from-port="0" to-layer="137" to-port="1" />
<edge from-layer="137" from-port="2" to-layer="138" to-port="0" />
<edge from-layer="138" from-port="1" to-layer="139" to-port="1" />
<edge from-layer="139" from-port="2" to-layer="141" to-port="0" />
<edge from-layer="140" from-port="0" to-layer="141" to-port="1" />
<edge from-layer="141" from-port="2" to-layer="144" to-port="0" />
<edge from-layer="142" from-port="0" to-layer="144" to-port="1" />
<edge from-layer="143" from-port="0" to-layer="144" to-port="2" />
<edge from-layer="144" from-port="3" to-layer="145" to-port="0" />
<edge from-layer="145" from-port="1" to-layer="154" to-port="0" />
<edge from-layer="146" from-port="0" to-layer="147" to-port="0" />
<edge from-layer="147" from-port="1" to-layer="150" to-port="0" />
<edge from-layer="148" from-port="0" to-layer="149" to-port="0" />
<edge from-layer="149" from-port="1" to-layer="150" to-port="1" />
<edge from-layer="150" from-port="2" to-layer="152" to-port="0" />
<edge from-layer="151" from-port="0" to-layer="152" to-port="1" />
<edge from-layer="152" from-port="2" to-layer="153" to-port="0" />
<edge from-layer="153" from-port="1" to-layer="154" to-port="1" />
<edge from-layer="154" from-port="2" to-layer="156" to-port="0" />
<edge from-layer="155" from-port="0" to-layer="156" to-port="1" />
<edge from-layer="156" from-port="2" to-layer="157" to-port="1" />
<edge from-layer="157" from-port="2" to-layer="166" to-port="0" />
<edge from-layer="158" from-port="0" to-layer="159" to-port="0" />
<edge from-layer="159" from-port="1" to-layer="162" to-port="0" />
<edge from-layer="160" from-port="0" to-layer="161" to-port="0" />
<edge from-layer="161" from-port="1" to-layer="162" to-port="1" />
<edge from-layer="162" from-port="2" to-layer="164" to-port="0" />
<edge from-layer="163" from-port="0" to-layer="164" to-port="1" />
<edge from-layer="164" from-port="2" to-layer="165" to-port="0" />
<edge from-layer="165" from-port="1" to-layer="166" to-port="1" />
<edge from-layer="166" from-port="2" to-layer="168" to-port="0" />
<edge from-layer="167" from-port="0" to-layer="168" to-port="1" />
<edge from-layer="168" from-port="2" to-layer="182" to-port="0" />
<edge from-layer="168" from-port="2" to-layer="177" to-port="0" />
<edge from-layer="169" from-port="0" to-layer="170" to-port="0" />
<edge from-layer="170" from-port="1" to-layer="173" to-port="0" />
<edge from-layer="171" from-port="0" to-layer="172" to-port="0" />
<edge from-layer="172" from-port="1" to-layer="173" to-port="1" />
<edge from-layer="173" from-port="2" to-layer="175" to-port="0" />
<edge from-layer="174" from-port="0" to-layer="175" to-port="1" />
<edge from-layer="175" from-port="2" to-layer="176" to-port="0" />
<edge from-layer="176" from-port="1" to-layer="177" to-port="1" />
<edge from-layer="177" from-port="2" to-layer="179" to-port="0" />
<edge from-layer="178" from-port="0" to-layer="179" to-port="1" />
<edge from-layer="179" from-port="2" to-layer="210" to-port="0" />
<edge from-layer="180" from-port="0" to-layer="182" to-port="1" />
<edge from-layer="181" from-port="0" to-layer="182" to-port="2" />
<edge from-layer="182" from-port="3" to-layer="183" to-port="0" />
<edge from-layer="183" from-port="1" to-layer="192" to-port="0" />
<edge from-layer="184" from-port="0" to-layer="185" to-port="0" />
<edge from-layer="185" from-port="1" to-layer="188" to-port="0" />
<edge from-layer="186" from-port="0" to-layer="187" to-port="0" />
<edge from-layer="187" from-port="1" to-layer="188" to-port="1" />
<edge from-layer="188" from-port="2" to-layer="190" to-port="0" />
<edge from-layer="189" from-port="0" to-layer="190" to-port="1" />
<edge from-layer="190" from-port="2" to-layer="191" to-port="0" />
<edge from-layer="191" from-port="1" to-layer="192" to-port="1" />
<edge from-layer="192" from-port="2" to-layer="194" to-port="0" />
<edge from-layer="193" from-port="0" to-layer="194" to-port="1" />
<edge from-layer="194" from-port="2" to-layer="197" to-port="0" />
<edge from-layer="195" from-port="0" to-layer="197" to-port="1" />
<edge from-layer="196" from-port="0" to-layer="197" to-port="2" />
<edge from-layer="197" from-port="3" to-layer="198" to-port="0" />
<edge from-layer="198" from-port="1" to-layer="207" to-port="0" />
<edge from-layer="199" from-port="0" to-layer="200" to-port="0" />
<edge from-layer="200" from-port="1" to-layer="203" to-port="0" />
<edge from-layer="201" from-port="0" to-layer="202" to-port="0" />
<edge from-layer="202" from-port="1" to-layer="203" to-port="1" />
<edge from-layer="203" from-port="2" to-layer="205" to-port="0" />
<edge from-layer="204" from-port="0" to-layer="205" to-port="1" />
<edge from-layer="205" from-port="2" to-layer="206" to-port="0" />
<edge from-layer="206" from-port="1" to-layer="207" to-port="1" />
<edge from-layer="207" from-port="2" to-layer="209" to-port="0" />
<edge from-layer="208" from-port="0" to-layer="209" to-port="1" />
<edge from-layer="209" from-port="2" to-layer="210" to-port="1" />
<edge from-layer="210" from-port="2" to-layer="241" to-port="0" />
<edge from-layer="210" from-port="2" to-layer="213" to-port="0" />
<edge from-layer="211" from-port="0" to-layer="213" to-port="1" />
<edge from-layer="212" from-port="0" to-layer="213" to-port="2" />
<edge from-layer="213" from-port="3" to-layer="214" to-port="0" />
<edge from-layer="214" from-port="1" to-layer="223" to-port="0" />
<edge from-layer="215" from-port="0" to-layer="216" to-port="0" />
<edge from-layer="216" from-port="1" to-layer="219" to-port="0" />
<edge from-layer="217" from-port="0" to-layer="218" to-port="0" />
<edge from-layer="218" from-port="1" to-layer="219" to-port="1" />
<edge from-layer="219" from-port="2" to-layer="221" to-port="0" />
<edge from-layer="220" from-port="0" to-layer="221" to-port="1" />
<edge from-layer="221" from-port="2" to-layer="222" to-port="0" />
<edge from-layer="222" from-port="1" to-layer="223" to-port="1" />
<edge from-layer="223" from-port="2" to-layer="225" to-port="0" />
<edge from-layer="224" from-port="0" to-layer="225" to-port="1" />
<edge from-layer="225" from-port="2" to-layer="228" to-port="0" />
<edge from-layer="226" from-port="0" to-layer="228" to-port="1" />
<edge from-layer="227" from-port="0" to-layer="228" to-port="2" />
<edge from-layer="228" from-port="3" to-layer="229" to-port="0" />
<edge from-layer="229" from-port="1" to-layer="238" to-port="0" />
<edge from-layer="230" from-port="0" to-layer="231" to-port="0" />
<edge from-layer="231" from-port="1" to-layer="234" to-port="0" />
<edge from-layer="232" from-port="0" to-layer="233" to-port="0" />
<edge from-layer="233" from-port="1" to-layer="234" to-port="1" />
<edge from-layer="234" from-port="2" to-layer="236" to-port="0" />
<edge from-layer="235" from-port="0" to-layer="236" to-port="1" />
<edge from-layer="236" from-port="2" to-layer="237" to-port="0" />
<edge from-layer="237" from-port="1" to-layer="238" to-port="1" />
<edge from-layer="238" from-port="2" to-layer="240" to-port="0" />
<edge from-layer="239" from-port="0" to-layer="240" to-port="1" />
<edge from-layer="240" from-port="2" to-layer="241" to-port="1" />
<edge from-layer="241" from-port="2" to-layer="250" to-port="0" />
<edge from-layer="242" from-port="0" to-layer="243" to-port="0" />
<edge from-layer="243" from-port="1" to-layer="246" to-port="0" />
<edge from-layer="244" from-port="0" to-layer="245" to-port="0" />
<edge from-layer="245" from-port="1" to-layer="246" to-port="1" />
<edge from-layer="246" from-port="2" to-layer="248" to-port="0" />
<edge from-layer="247" from-port="0" to-layer="248" to-port="1" />
<edge from-layer="248" from-port="2" to-layer="249" to-port="0" />
<edge from-layer="249" from-port="1" to-layer="250" to-port="1" />
<edge from-layer="250" from-port="2" to-layer="252" to-port="0" />
<edge from-layer="251" from-port="0" to-layer="252" to-port="1" />
<edge from-layer="252" from-port="2" to-layer="283" to-port="0" />
<edge from-layer="252" from-port="2" to-layer="255" to-port="0" />
<edge from-layer="253" from-port="0" to-layer="255" to-port="1" />
<edge from-layer="254" from-port="0" to-layer="255" to-port="2" />
<edge from-layer="255" from-port="3" to-layer="256" to-port="0" />
<edge from-layer="256" from-port="1" to-layer="265" to-port="0" />
<edge from-layer="257" from-port="0" to-layer="258" to-port="0" />
<edge from-layer="258" from-port="1" to-layer="261" to-port="0" />
<edge from-layer="259" from-port="0" to-layer="260" to-port="0" />
<edge from-layer="260" from-port="1" to-layer="261" to-port="1" />
<edge from-layer="261" from-port="2" to-layer="263" to-port="0" />
<edge from-layer="262" from-port="0" to-layer="263" to-port="1" />
<edge from-layer="263" from-port="2" to-layer="264" to-port="0" />
<edge from-layer="264" from-port="1" to-layer="265" to-port="1" />
<edge from-layer="265" from-port="2" to-layer="267" to-port="0" />
<edge from-layer="266" from-port="0" to-layer="267" to-port="1" />
<edge from-layer="267" from-port="2" to-layer="270" to-port="0" />
<edge from-layer="268" from-port="0" to-layer="270" to-port="1" />
<edge from-layer="269" from-port="0" to-layer="270" to-port="2" />
<edge from-layer="270" from-port="3" to-layer="271" to-port="0" />
<edge from-layer="271" from-port="1" to-layer="280" to-port="0" />
<edge from-layer="272" from-port="0" to-layer="273" to-port="0" />
<edge from-layer="273" from-port="1" to-layer="276" to-port="0" />
<edge from-layer="274" from-port="0" to-layer="275" to-port="0" />
<edge from-layer="275" from-port="1" to-layer="276" to-port="1" />
<edge from-layer="276" from-port="2" to-layer="278" to-port="0" />
<edge from-layer="277" from-port="0" to-layer="278" to-port="1" />
<edge from-layer="278" from-port="2" to-layer="279" to-port="0" />
<edge from-layer="279" from-port="1" to-layer="280" to-port="1" />
<edge from-layer="280" from-port="2" to-layer="282" to-port="0" />
<edge from-layer="281" from-port="0" to-layer="282" to-port="1" />
<edge from-layer="282" from-port="2" to-layer="283" to-port="1" />
<edge from-layer="283" from-port="2" to-layer="314" to-port="0" />
<edge from-layer="283" from-port="2" to-layer="286" to-port="0" />
<edge from-layer="284" from-port="0" to-layer="286" to-port="1" />
<edge from-layer="285" from-port="0" to-layer="286" to-port="2" />
<edge from-layer="286" from-port="3" to-layer="287" to-port="0" />
<edge from-layer="287" from-port="1" to-layer="296" to-port="0" />
<edge from-layer="288" from-port="0" to-layer="289" to-port="0" />
<edge from-layer="289" from-port="1" to-layer="292" to-port="0" />
<edge from-layer="290" from-port="0" to-layer="291" to-port="0" />
<edge from-layer="291" from-port="1" to-layer="292" to-port="1" />
<edge from-layer="292" from-port="2" to-layer="294" to-port="0" />
<edge from-layer="293" from-port="0" to-layer="294" to-port="1" />
<edge from-layer="294" from-port="2" to-layer="295" to-port="0" />
<edge from-layer="295" from-port="1" to-layer="296" to-port="1" />
<edge from-layer="296" from-port="2" to-layer="298" to-port="0" />
<edge from-layer="297" from-port="0" to-layer="298" to-port="1" />
<edge from-layer="298" from-port="2" to-layer="301" to-port="0" />
<edge from-layer="299" from-port="0" to-layer="301" to-port="1" />
<edge from-layer="300" from-port="0" to-layer="301" to-port="2" />
<edge from-layer="301" from-port="3" to-layer="302" to-port="0" />
<edge from-layer="302" from-port="1" to-layer="311" to-port="0" />
<edge from-layer="303" from-port="0" to-layer="304" to-port="0" />
<edge from-layer="304" from-port="1" to-layer="307" to-port="0" />
<edge from-layer="305" from-port="0" to-layer="306" to-port="0" />
<edge from-layer="306" from-port="1" to-layer="307" to-port="1" />
<edge from-layer="307" from-port="2" to-layer="309" to-port="0" />
<edge from-layer="308" from-port="0" to-layer="309" to-port="1" />
<edge from-layer="309" from-port="2" to-layer="310" to-port="0" />
<edge from-layer="310" from-port="1" to-layer="311" to-port="1" />
<edge from-layer="311" from-port="2" to-layer="313" to-port="0" />
<edge from-layer="312" from-port="0" to-layer="313" to-port="1" />
<edge from-layer="313" from-port="2" to-layer="314" to-port="1" />
<edge from-layer="314" from-port="2" to-layer="317" to-port="0" />
<edge from-layer="314" from-port="2" to-layer="345" to-port="0" />
<edge from-layer="315" from-port="0" to-layer="317" to-port="1" />
<edge from-layer="316" from-port="0" to-layer="317" to-port="2" />
<edge from-layer="317" from-port="3" to-layer="318" to-port="0" />
<edge from-layer="318" from-port="1" to-layer="327" to-port="0" />
<edge from-layer="319" from-port="0" to-layer="320" to-port="0" />
<edge from-layer="320" from-port="1" to-layer="323" to-port="0" />
<edge from-layer="321" from-port="0" to-layer="322" to-port="0" />
<edge from-layer="322" from-port="1" to-layer="323" to-port="1" />
<edge from-layer="323" from-port="2" to-layer="325" to-port="0" />
<edge from-layer="324" from-port="0" to-layer="325" to-port="1" />
<edge from-layer="325" from-port="2" to-layer="326" to-port="0" />
<edge from-layer="326" from-port="1" to-layer="327" to-port="1" />
<edge from-layer="327" from-port="2" to-layer="329" to-port="0" />
<edge from-layer="328" from-port="0" to-layer="329" to-port="1" />
<edge from-layer="329" from-port="2" to-layer="332" to-port="0" />
<edge from-layer="330" from-port="0" to-layer="332" to-port="1" />
<edge from-layer="331" from-port="0" to-layer="332" to-port="2" />
<edge from-layer="332" from-port="3" to-layer="333" to-port="0" />
<edge from-layer="333" from-port="1" to-layer="342" to-port="0" />
<edge from-layer="334" from-port="0" to-layer="335" to-port="0" />
<edge from-layer="335" from-port="1" to-layer="338" to-port="0" />
<edge from-layer="336" from-port="0" to-layer="337" to-port="0" />
<edge from-layer="337" from-port="1" to-layer="338" to-port="1" />
<edge from-layer="338" from-port="2" to-layer="340" to-port="0" />
<edge from-layer="339" from-port="0" to-layer="340" to-port="1" />
<edge from-layer="340" from-port="2" to-layer="341" to-port="0" />
<edge from-layer="341" from-port="1" to-layer="342" to-port="1" />
<edge from-layer="342" from-port="2" to-layer="344" to-port="0" />
<edge from-layer="343" from-port="0" to-layer="344" to-port="1" />
<edge from-layer="344" from-port="2" to-layer="345" to-port="1" />
<edge from-layer="345" from-port="2" to-layer="347" to-port="0" />
<edge from-layer="345" from-port="2" to-layer="420" to-port="1" />
<edge from-layer="345" from-port="2" to-layer="418" to-port="0" />
<edge from-layer="346" from-port="0" to-layer="347" to-port="1" />
<edge from-layer="347" from-port="2" to-layer="349" to-port="0" />
<edge from-layer="348" from-port="0" to-layer="349" to-port="1" />
<edge from-layer="349" from-port="2" to-layer="351" to-port="0" />
<edge from-layer="350" from-port="0" to-layer="351" to-port="1" />
<edge from-layer="351" from-port="2" to-layer="354" to-port="0" />
<edge from-layer="352" from-port="0" to-layer="354" to-port="1" />
<edge from-layer="353" from-port="0" to-layer="354" to-port="2" />
<edge from-layer="354" from-port="3" to-layer="393" to-port="0" />
<edge from-layer="354" from-port="3" to-layer="363" to-port="0" />
<edge from-layer="354" from-port="3" to-layer="378" to-port="0" />
<edge from-layer="355" from-port="0" to-layer="356" to-port="0" />
<edge from-layer="356" from-port="1" to-layer="359" to-port="0" />
<edge from-layer="357" from-port="0" to-layer="358" to-port="0" />
<edge from-layer="358" from-port="1" to-layer="359" to-port="1" />
<edge from-layer="359" from-port="2" to-layer="361" to-port="0" />
<edge from-layer="360" from-port="0" to-layer="361" to-port="1" />
<edge from-layer="361" from-port="2" to-layer="362" to-port="0" />
<edge from-layer="362" from-port="1" to-layer="363" to-port="1" />
<edge from-layer="363" from-port="2" to-layer="365" to-port="0" />
<edge from-layer="364" from-port="0" to-layer="365" to-port="1" />
<edge from-layer="365" from-port="2" to-layer="367" to-port="0" />
<edge from-layer="366" from-port="0" to-layer="367" to-port="1" />
<edge from-layer="367" from-port="2" to-layer="369" to-port="0" />
<edge from-layer="368" from-port="0" to-layer="369" to-port="1" />
<edge from-layer="369" from-port="2" to-layer="400" to-port="0" />
<edge from-layer="370" from-port="0" to-layer="371" to-port="0" />
<edge from-layer="371" from-port="1" to-layer="374" to-port="0" />
<edge from-layer="372" from-port="0" to-layer="373" to-port="0" />
<edge from-layer="373" from-port="1" to-layer="374" to-port="1" />
<edge from-layer="374" from-port="2" to-layer="376" to-port="0" />
<edge from-layer="375" from-port="0" to-layer="376" to-port="1" />
<edge from-layer="376" from-port="2" to-layer="377" to-port="0" />
<edge from-layer="377" from-port="1" to-layer="378" to-port="1" />
<edge from-layer="378" from-port="2" to-layer="380" to-port="0" />
<edge from-layer="379" from-port="0" to-layer="380" to-port="1" />
<edge from-layer="380" from-port="2" to-layer="382" to-port="0" />
<edge from-layer="381" from-port="0" to-layer="382" to-port="1" />
<edge from-layer="382" from-port="2" to-layer="384" to-port="0" />
<edge from-layer="383" from-port="0" to-layer="384" to-port="1" />
<edge from-layer="384" from-port="2" to-layer="400" to-port="1" />
<edge from-layer="385" from-port="0" to-layer="386" to-port="0" />
<edge from-layer="386" from-port="1" to-layer="389" to-port="0" />
<edge from-layer="387" from-port="0" to-layer="388" to-port="0" />
<edge from-layer="388" from-port="1" to-layer="389" to-port="1" />
<edge from-layer="389" from-port="2" to-layer="391" to-port="0" />
<edge from-layer="390" from-port="0" to-layer="391" to-port="1" />
<edge from-layer="391" from-port="2" to-layer="392" to-port="0" />
<edge from-layer="392" from-port="1" to-layer="393" to-port="1" />
<edge from-layer="393" from-port="2" to-layer="395" to-port="0" />
<edge from-layer="394" from-port="0" to-layer="395" to-port="1" />
<edge from-layer="395" from-port="2" to-layer="397" to-port="0" />
<edge from-layer="396" from-port="0" to-layer="397" to-port="1" />
<edge from-layer="397" from-port="2" to-layer="399" to-port="0" />
<edge from-layer="398" from-port="0" to-layer="399" to-port="1" />
<edge from-layer="399" from-port="2" to-layer="400" to-port="2" />
<edge from-layer="400" from-port="3" to-layer="402" to-port="0" />
<edge from-layer="401" from-port="0" to-layer="402" to-port="1" />
<edge from-layer="402" from-port="2" to-layer="404" to-port="0" />
<edge from-layer="403" from-port="0" to-layer="404" to-port="1" />
<edge from-layer="404" from-port="2" to-layer="413" to-port="0" />
<edge from-layer="405" from-port="0" to-layer="406" to-port="0" />
<edge from-layer="406" from-port="1" to-layer="409" to-port="0" />
<edge from-layer="407" from-port="0" to-layer="408" to-port="0" />
<edge from-layer="408" from-port="1" to-layer="409" to-port="1" />
<edge from-layer="409" from-port="2" to-layer="411" to-port="0" />
<edge from-layer="410" from-port="0" to-layer="411" to-port="1" />
<edge from-layer="411" from-port="2" to-layer="412" to-port="0" />
<edge from-layer="412" from-port="1" to-layer="413" to-port="1" />
<edge from-layer="413" from-port="2" to-layer="415" to-port="0" />
<edge from-layer="414" from-port="0" to-layer="415" to-port="1" />
<edge from-layer="415" from-port="2" to-layer="417" to-port="0" />
<edge from-layer="416" from-port="0" to-layer="417" to-port="1" />
<edge from-layer="417" from-port="2" to-layer="419" to-port="0" />
<edge from-layer="418" from-port="1" to-layer="419" to-port="1" />
<edge from-layer="419" from-port="2" to-layer="420" to-port="0" />
<edge from-layer="420" from-port="2" to-layer="423" to-port="0" />
<edge from-layer="420" from-port="2" to-layer="451" to-port="0" />
<edge from-layer="421" from-port="0" to-layer="423" to-port="1" />
<edge from-layer="422" from-port="0" to-layer="423" to-port="2" />
<edge from-layer="423" from-port="3" to-layer="424" to-port="0" />
<edge from-layer="424" from-port="1" to-layer="433" to-port="0" />
<edge from-layer="425" from-port="0" to-layer="426" to-port="0" />
<edge from-layer="426" from-port="1" to-layer="429" to-port="0" />
<edge from-layer="427" from-port="0" to-layer="428" to-port="0" />
<edge from-layer="428" from-port="1" to-layer="429" to-port="1" />
<edge from-layer="429" from-port="2" to-layer="431" to-port="0" />
<edge from-layer="430" from-port="0" to-layer="431" to-port="1" />
<edge from-layer="431" from-port="2" to-layer="432" to-port="0" />
<edge from-layer="432" from-port="1" to-layer="433" to-port="1" />
<edge from-layer="433" from-port="2" to-layer="435" to-port="0" />
<edge from-layer="434" from-port="0" to-layer="435" to-port="1" />
<edge from-layer="435" from-port="2" to-layer="438" to-port="0" />
<edge from-layer="436" from-port="0" to-layer="438" to-port="1" />
<edge from-layer="437" from-port="0" to-layer="438" to-port="2" />
<edge from-layer="438" from-port="3" to-layer="439" to-port="0" />
<edge from-layer="439" from-port="1" to-layer="448" to-port="0" />
<edge from-layer="440" from-port="0" to-layer="441" to-port="0" />
<edge from-layer="441" from-port="1" to-layer="444" to-port="0" />
<edge from-layer="442" from-port="0" to-layer="443" to-port="0" />
<edge from-layer="443" from-port="1" to-layer="444" to-port="1" />
<edge from-layer="444" from-port="2" to-layer="446" to-port="0" />
<edge from-layer="445" from-port="0" to-layer="446" to-port="1" />
<edge from-layer="446" from-port="2" to-layer="447" to-port="0" />
<edge from-layer="447" from-port="1" to-layer="448" to-port="1" />
<edge from-layer="448" from-port="2" to-layer="450" to-port="0" />
<edge from-layer="449" from-port="0" to-layer="450" to-port="1" />
<edge from-layer="450" from-port="2" to-layer="451" to-port="1" />
<edge from-layer="451" from-port="2" to-layer="454" to-port="0" />
<edge from-layer="452" from-port="0" to-layer="454" to-port="1" />
<edge from-layer="453" from-port="0" to-layer="454" to-port="2" />
<edge from-layer="454" from-port="3" to-layer="455" to-port="0" />
<edge from-layer="455" from-port="1" to-layer="464" to-port="0" />
<edge from-layer="456" from-port="0" to-layer="457" to-port="0" />
<edge from-layer="457" from-port="1" to-layer="460" to-port="0" />
<edge from-layer="458" from-port="0" to-layer="459" to-port="0" />
<edge from-layer="459" from-port="1" to-layer="460" to-port="1" />
<edge from-layer="460" from-port="2" to-layer="462" to-port="0" />
<edge from-layer="461" from-port="0" to-layer="462" to-port="1" />
<edge from-layer="462" from-port="2" to-layer="463" to-port="0" />
<edge from-layer="463" from-port="1" to-layer="464" to-port="1" />
<edge from-layer="464" from-port="2" to-layer="466" to-port="0" />
<edge from-layer="465" from-port="0" to-layer="466" to-port="1" />
<edge from-layer="466" from-port="2" to-layer="467" to-port="0" />
</edges>
<rt_info>
<Runtime_version value="2024.5.0-17227-2441dcdbcf2" />
<conversion_parameters>
<framework value="pytorch" />
<is_python_object value="True" />
</conversion_parameters>
<nncf>
<friendly_names_were_updated value="True" />
<weight_compression>
<advanced_parameters value="{'awq_params': {'subset_size': 32, 'percent_to_apply': 0.002, 'alpha_min': 0.0, 'alpha_max': 1.0, 'steps': 100}, 'scale_estimation_params': {'subset_size': 64, 'initial_steps': 5, 'scale_steps': 5, 'weight_penalty': -1.0}, 'gptq_params': {'damp_percent': 0.1, 'block_size': 128, 'subset_size': 128}, 'lora_correction_params': {'adapter_rank': 8, 'num_iterations': 3, 'apply_regularization': True, 'subset_size': 128, 'use_int8_adapters': True}}" />
<all_layers value="False" />
<awq value="False" />
<gptq value="False" />
<group_size value="-1" />
<ignored_scope value="[]" />
<lora_correction value="False" />
<mode value="int8_asym" />
<ratio value="1.0" />
<scale_estimation value="False" />
<sensitivity_metric value="weight_quantization_error" />
</weight_compression>
</nncf>
<optimum>
<diffusers_version value="0.31.0" />
<optimum_intel_version value="1.21.0.dev0+c887610" />
<optimum_version value="1.23.3" />
<pytorch_version value="2.4.1+cpu" />
<transformers_version value="4.45.2" />
</optimum>
</rt_info>
</net>