File size: 14,295 Bytes
c499def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42af6e4
c499def
 
 
67c7760
c499def
 
 
 
2ecddb3
c499def
 
 
 
 
 
 
 
 
 
 
 
 
 
2d2b94c
 
4a82535
c499def
4a82535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6877568
 
 
 
 
 
 
c499def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6343cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c499def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
license: apache-2.0
datasets:
- AIDC-AI/Ovis-dataset
library_name: transformers
tags:
- MLLM
pipeline_tag: image-text-to-text
language:
- en
- zh
---

# Ovis2-1B
<div align="center">
  <img src=https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/3IK823BZ8w-mz_QfeYkDn.png width="30%"/>
</div>

## Introduction
[GitHub](https://github.com/AIDC-AI/Ovis) | [Paper](https://arxiv.org/abs/2405.20797) 

We are pleased to announce the release of **Ovis2**, our latest advancement in multi-modal large language models (MLLMs). Ovis2 inherits the innovative architectural design of the Ovis series, aimed at structurally aligning visual and textual embeddings. As the successor to Ovis1.6, Ovis2 incorporates significant improvements in both dataset curation and training methodologies.

**Key Features**:

- **Small Model Performance**: Optimized training strategies enable small-scale models to achieve higher capability density, demonstrating cross-tier leading advantages.

- **Enhanced Reasoning Capabilities**: Significantly strengthens Chain-of-Thought (CoT) reasoning abilities through the combination of instruction tuning and preference learning.

- **Video and Multi-Image Processing**: Video and multi-image data are incorporated into training to enhance the ability to handle complex visual information across frames and images.

- **Multilingual Support and OCR**: Enhances multilingual OCR beyond English and Chinese and improves structured data extraction from complex visual elements like tables and charts.

<div align="center">
    <img src="https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/XB-vgzDL6FshrSNGyZvzc.png" width="100%" />
</div>

## Model Zoo

| Ovis MLLMs |           ViT           |          LLM          |                      Model Weights                      |                           Demo                           |
|:-----------|:-----------------------:|:---------------------:|:-------------------------------------------------------:|:--------------------------------------------------------:|
| Ovis2-1B   | aimv2-large-patch14-448 | Qwen2.5-0.5B-Instruct | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2-1B)  | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2-1B)  |
| Ovis2-2B   | aimv2-large-patch14-448 | Qwen2.5-1.5B-Instruct | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2-2B)  | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2-2B)  |
| Ovis2-4B   | aimv2-huge-patch14-448  |  Qwen2.5-3B-Instruct  | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2-4B)  | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2-4B)  |
| Ovis2-8B   | aimv2-huge-patch14-448  |  Qwen2.5-7B-Instruct  | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2-8B)  | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2-8B)  |
| Ovis2-16B  | aimv2-huge-patch14-448  | Qwen2.5-14B-Instruct  | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2-16B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2-16B) |
| Ovis2-34B  |  aimv2-1B-patch14-448   | Qwen2.5-32B-Instruct  | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2-34B) |                            -                             |

## Performance
We use [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), as employed in the OpenCompass [multimodal](https://rank.opencompass.org.cn/leaderboard-multimodal) and [reasoning](https://rank.opencompass.org.cn/leaderboard-multimodal-reasoning) leaderboard, to evaluate Ovis2.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a8a837959448ef5500ce5/M1XRFbeNbfe1lEvt9WF-j.png)

### Image Benchmark
| Benchmark                    | Qwen2.5-VL-3B   |   SAIL-VL-2B | InternVL2.5-2B-MPO   | Ovis1.6-3B   |   InternVL2.5-1B-MPO | Ovis2-1B   | Ovis2-2B   |
|:-----------------------------|:---------------:|:------------:|:--------------------:|:------------:|:--------------------:|:----------:|:----------:|
| MMBench-V1.1<sub>test</sub>  | **77.1**        |         73.6 | 70.7                 | 74.1         |                 65.8 | 68.4       | 76.9       |
| MMStar                       | 56.5            |         56.5 | 54.9                 | 52.0         |                 49.5 | 52.1       | **56.7**   |
| MMMU<sub>val</sub>           | **51.4**        |         44.1 | 44.6                 | 46.7         |                 40.3 | 36.1       | 45.6       |
| MathVista<sub>testmini</sub> | 60.1            |         62.8 | 53.4                 | 58.9         |                 47.7 | 59.4       | **64.1**   |
| HallusionBench               | 48.7            |         45.9 | 40.7                 | 43.8         |                 34.8 | 45.2       | **50.2**   |
| AI2D                         | 81.4            |         77.4 | 75.1                 | 77.8         |                 68.5 | 76.4       | **82.7**   |
| OCRBench                     | 83.1            |         83.1 | 83.8                 | 80.1         |                 84.3 | **89.0**   | 87.3       |
| MMVet                        | 63.2            |         44.2 | **64.2**             | 57.6         |                 47.2 | 50.0       | 58.3       |
| MMBench<sub>test</sub>       | 78.6            |         77   | 72.8                 | 76.6         |                 67.9 | 70.2       | **78.9**   |
| MMT-Bench<sub>val</sub>      | 60.8            |         57.1 | 54.4                 | 59.2         |                 50.8 | 55.5       | **61.7**   |
| RealWorldQA                  | 66.5            |         62   | 61.3                 | **66.7**     |                 57   | 63.9       | 66.0       |
| BLINK                        | **48.4**        |         46.4 | 43.8                 | 43.8         |                 41   | 44.0       | 47.9       |
| QBench                       | 74.4            |         72.8 | 69.8                 | 75.8         |                 63.3 | 71.3       | **76.2**   |
| ABench                       | 75.5            |         74.5 | 71.1                 | 75.2         |                 67.5 | 71.3       | **76.6**   |
| MTVQA                        | 24.9            |         20.2 | 22.6                 | 21.1         |                 21.7 | 23.7       | **25.6**   |

### Video Benchmark
| Benchmark           | Qwen2.5-VL-3B | InternVL2.5-2B | InternVL2.5-1B | Ovis2-1B  | Ovis2-2B      |
| ------------------- |:-------------:|:--------------:|:--------------:|:---------:|:-------------:|
| VideoMME(wo/w-subs) | **61.5/67.6** | 51.9 / 54.1    | 50.3 / 52.3    | 48.6/49.5 | 57.2/60.8     |
| MVBench             | 67.0          | **68.8**       | 64.3           | 60.32     | 64.9          |
| MLVU(M-Avg/G-Avg)   | 68.2/-        | 61.4/-         | 57.3/-         | 58.5/3.66 | **68.6**/3.86 |
| MMBench-Video       | **1.63**      | 1.44           | 1.36           | 1.26      | 1.57          |
| TempCompass         | **64.4**      | -              | -              | 51.43     | 62.64         |

## Usage
Below is a code snippet demonstrating how to run Ovis with various input types. For additional usage instructions, including inference wrapper and Gradio UI, please refer to [Ovis GitHub](https://github.com/AIDC-AI/Ovis?tab=readme-ov-file#inference).
```bash
pip install torch==2.4.0 transformers==4.46.2 numpy==1.25.0 pillow==10.3.0
pip install flash-attn==2.7.0.post2 --no-build-isolation
```
```python
import torch
from PIL import Image
from transformers import AutoModelForCausalLM

# load model
model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Ovis2-1B",
                                             torch_dtype=torch.bfloat16,
                                             multimodal_max_length=32768,
                                             trust_remote_code=True).cuda()
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()

# single-image input
image_path = '/data/images/example_1.jpg'
images = [Image.open(image_path)]
max_partition = 9
text = 'Describe the image.'
query = f'<image>\n{text}'

## cot-style input
# cot_suffix = "Provide a step-by-step solution to the problem, and conclude with 'the answer is' followed by the final solution."
# image_path = '/data/images/example_1.jpg'
# images = [Image.open(image_path)]
# max_partition = 9
# text = "What's the area of the shape?"
# query = f'<image>\n{text}\n{cot_suffix}'

## multiple-images input
# image_paths = [
#     '/data/images/example_1.jpg',
#     '/data/images/example_2.jpg',
#     '/data/images/example_3.jpg'
# ]
# images = [Image.open(image_path) for image_path in image_paths]
# max_partition = 4
# text = 'Describe each image.'
# query = '\n'.join([f'Image {i+1}: <image>' for i in range(len(images))]) + '\n' + text

## video input (require `pip install moviepy==1.0.3`)
# from moviepy.editor import VideoFileClip
# video_path = '/data/videos/example_1.mp4'
# num_frames = 12
# max_partition = 1
# text = 'Describe the video.'
# with VideoFileClip(video_path) as clip:
#     total_frames = int(clip.fps * clip.duration)
#     if total_frames <= num_frames:
#         sampled_indices = range(total_frames)
#     else:
#         stride = total_frames / num_frames
#         sampled_indices = [min(total_frames - 1, int((stride * i + stride * (i + 1)) / 2)) for i in range(num_frames)]
#     frames = [clip.get_frame(index / clip.fps) for index in sampled_indices]
#     frames = [Image.fromarray(frame, mode='RGB') for frame in frames]
# images = frames
# query = '\n'.join(['<image>'] * len(images)) + '\n' + text

## text-only input
# images = []
# max_partition = None
# text = 'Hello'
# query = text

# format conversation
prompt, input_ids, pixel_values = model.preprocess_inputs(query, images, max_partition=max_partition)
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
input_ids = input_ids.unsqueeze(0).to(device=model.device)
attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
if pixel_values is not None:
    pixel_values = pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)
pixel_values = [pixel_values]

# generate output
with torch.inference_mode():
    gen_kwargs = dict(
        max_new_tokens=1024,
        do_sample=False,
        top_p=None,
        top_k=None,
        temperature=None,
        repetition_penalty=None,
        eos_token_id=model.generation_config.eos_token_id,
        pad_token_id=text_tokenizer.pad_token_id,
        use_cache=True
    )
    output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0]
    output = text_tokenizer.decode(output_ids, skip_special_tokens=True)
    print(f'Output:\n{output}')
```

<details>
<summary>Batch Inference</summary>

```python
import torch
from PIL import Image
from transformers import AutoModelForCausalLM

# load model
model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Ovis2-1B",
                                             torch_dtype=torch.bfloat16,
                                             multimodal_max_length=32768,
                                             trust_remote_code=True).cuda()
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()

# preprocess inputs
batch_inputs = [
    ('/data/images/example_1.jpg', 'What colors dominate the image?'),
    ('/data/images/example_2.jpg', 'What objects are depicted in this image?'),
    ('/data/images/example_3.jpg', 'Is there any text in the image?')
]

batch_input_ids = []
batch_attention_mask = []
batch_pixel_values = []

for image_path, text in batch_inputs:
    image = Image.open(image_path)
    query = f'<image>\n{text}'
    prompt, input_ids, pixel_values = model.preprocess_inputs(query, [image], max_partition=9)
    attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
    batch_input_ids.append(input_ids.to(device=model.device))
    batch_attention_mask.append(attention_mask.to(device=model.device))
    batch_pixel_values.append(pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device))

batch_input_ids = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in batch_input_ids], batch_first=True,
                                                  padding_value=0.0).flip(dims=[1])
batch_input_ids = batch_input_ids[:, -model.config.multimodal_max_length:]
batch_attention_mask = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in batch_attention_mask],
                                                       batch_first=True, padding_value=False).flip(dims=[1])
batch_attention_mask = batch_attention_mask[:, -model.config.multimodal_max_length:]

# generate outputs
with torch.inference_mode():
    gen_kwargs = dict(
        max_new_tokens=1024,
        do_sample=False,
        top_p=None,
        top_k=None,
        temperature=None,
        repetition_penalty=None,
        eos_token_id=model.generation_config.eos_token_id,
        pad_token_id=text_tokenizer.pad_token_id,
        use_cache=True
    )
    output_ids = model.generate(batch_input_ids, pixel_values=batch_pixel_values, attention_mask=batch_attention_mask,
                                **gen_kwargs)

for i in range(len(batch_inputs)):
    output = text_tokenizer.decode(output_ids[i], skip_special_tokens=True)
    print(f'Output {i + 1}:\n{output}\n')
```
</details>

## Citation
If you find Ovis useful, please consider citing the paper
```
@article{lu2024ovis,
  title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model},
  author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye},
  year={2024},
  journal={arXiv:2405.20797}
}
```

## License
This project is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) (SPDX-License-Identifier: Apache-2.0).

## Disclaimer
We used compliance-checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.