xxyyy123 commited on
Commit
87db944
1 Parent(s): 458c303

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Ovis"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_ovis.OvisConfig",
7
+ "AutoModelForCausalLM": "modeling_ovis.Ovis"
8
+ },
9
+ "conversation_formatter_class": "Llama3ConversationFormatter",
10
+ "disable_tie_weight": false,
11
+ "hidden_size": 3072,
12
+ "llm_attn_implementation": "eager",
13
+ "llm_config": {
14
+ "_name_or_path": "meta-llama/Llama-3.2-3B",
15
+ "add_cross_attention": false,
16
+ "architectures": [
17
+ "LlamaForCausalLM"
18
+ ],
19
+ "attention_bias": false,
20
+ "attention_dropout": 0.0,
21
+ "bad_words_ids": null,
22
+ "begin_suppress_tokens": null,
23
+ "bos_token_id": 128000,
24
+ "chunk_size_feed_forward": 0,
25
+ "cross_attention_hidden_size": null,
26
+ "decoder_start_token_id": null,
27
+ "diversity_penalty": 0.0,
28
+ "do_sample": false,
29
+ "early_stopping": false,
30
+ "encoder_no_repeat_ngram_size": 0,
31
+ "eos_token_id": [
32
+ 128001,
33
+ 128008,
34
+ 128009
35
+ ],
36
+ "exponential_decay_length_penalty": null,
37
+ "finetuning_task": null,
38
+ "forced_bos_token_id": null,
39
+ "forced_eos_token_id": null,
40
+ "head_dim": 128,
41
+ "hidden_act": "silu",
42
+ "hidden_size": 3072,
43
+ "id2label": {
44
+ "0": "LABEL_0",
45
+ "1": "LABEL_1"
46
+ },
47
+ "initializer_range": 0.02,
48
+ "intermediate_size": 8192,
49
+ "is_decoder": false,
50
+ "is_encoder_decoder": false,
51
+ "label2id": {
52
+ "LABEL_0": 0,
53
+ "LABEL_1": 1
54
+ },
55
+ "length_penalty": 1.0,
56
+ "max_length": 20,
57
+ "max_position_embeddings": 131072,
58
+ "min_length": 0,
59
+ "mlp_bias": false,
60
+ "model_type": "llama",
61
+ "no_repeat_ngram_size": 0,
62
+ "num_attention_heads": 24,
63
+ "num_beam_groups": 1,
64
+ "num_beams": 1,
65
+ "num_hidden_layers": 28,
66
+ "num_key_value_heads": 8,
67
+ "num_return_sequences": 1,
68
+ "output_attentions": false,
69
+ "output_hidden_states": false,
70
+ "output_scores": false,
71
+ "pad_token_id": null,
72
+ "prefix": null,
73
+ "pretraining_tp": 1,
74
+ "problem_type": null,
75
+ "pruned_heads": {},
76
+ "remove_invalid_values": false,
77
+ "repetition_penalty": 1.0,
78
+ "return_dict": true,
79
+ "return_dict_in_generate": false,
80
+ "rms_norm_eps": 1e-05,
81
+ "rope_scaling": {
82
+ "factor": 32.0,
83
+ "high_freq_factor": 4.0,
84
+ "low_freq_factor": 1.0,
85
+ "original_max_position_embeddings": 8192,
86
+ "rope_type": "llama3"
87
+ },
88
+ "rope_theta": 500000.0,
89
+ "sep_token_id": null,
90
+ "suppress_tokens": null,
91
+ "task_specific_params": null,
92
+ "temperature": 1.0,
93
+ "tf_legacy_loss": false,
94
+ "tie_encoder_decoder": false,
95
+ "tie_word_embeddings": true,
96
+ "tokenizer_class": null,
97
+ "top_k": 50,
98
+ "top_p": 1.0,
99
+ "torch_dtype": "bfloat16",
100
+ "torchscript": false,
101
+ "typical_p": 1.0,
102
+ "use_bfloat16": false,
103
+ "use_cache": false,
104
+ "vocab_size": 128256
105
+ },
106
+ "model_type": "ovis",
107
+ "multimodal_max_length": 2624,
108
+ "quantization_config": {
109
+ "bits": 4,
110
+ "checkpoint_format": "gptq",
111
+ "damp_percent": 0.1,
112
+ "desc_act": false,
113
+ "group_size": 128,
114
+ "model_file_base_name": null,
115
+ "model_name_or_path": null,
116
+ "quant_method": "gptq",
117
+ "static_groups": false,
118
+ "sym": true,
119
+ "true_sequential": true
120
+ },
121
+ "torch_dtype": "bfloat16",
122
+ "transformers_version": "4.44.2",
123
+ "use_cache": false,
124
+ "visual_tokenizer_config": {
125
+ "_name_or_path": "",
126
+ "add_cross_attention": false,
127
+ "architectures": [
128
+ "SiglipVisualTokenizer"
129
+ ],
130
+ "backbone_config": {
131
+ "_name_or_path": "google/siglip-so400m-patch14-384",
132
+ "add_cross_attention": false,
133
+ "architectures": null,
134
+ "attention_dropout": 0.0,
135
+ "bad_words_ids": null,
136
+ "begin_suppress_tokens": null,
137
+ "bos_token_id": null,
138
+ "chunk_size_feed_forward": 0,
139
+ "cross_attention_hidden_size": null,
140
+ "decoder_start_token_id": null,
141
+ "diversity_penalty": 0.0,
142
+ "do_sample": false,
143
+ "early_stopping": false,
144
+ "encoder_no_repeat_ngram_size": 0,
145
+ "eos_token_id": null,
146
+ "exponential_decay_length_penalty": null,
147
+ "finetuning_task": null,
148
+ "forced_bos_token_id": null,
149
+ "forced_eos_token_id": null,
150
+ "hidden_act": "gelu_pytorch_tanh",
151
+ "hidden_size": 1152,
152
+ "id2label": {
153
+ "0": "LABEL_0",
154
+ "1": "LABEL_1"
155
+ },
156
+ "image_size": 384,
157
+ "intermediate_size": 4304,
158
+ "is_decoder": false,
159
+ "is_encoder_decoder": false,
160
+ "label2id": {
161
+ "LABEL_0": 0,
162
+ "LABEL_1": 1
163
+ },
164
+ "layer_norm_eps": 1e-06,
165
+ "length_penalty": 1.0,
166
+ "max_length": 20,
167
+ "min_length": 0,
168
+ "model_type": "siglip_vision_model",
169
+ "no_repeat_ngram_size": 0,
170
+ "num_attention_heads": 16,
171
+ "num_beam_groups": 1,
172
+ "num_beams": 1,
173
+ "num_channels": 3,
174
+ "num_hidden_layers": 27,
175
+ "num_return_sequences": 1,
176
+ "output_attentions": false,
177
+ "output_hidden_states": false,
178
+ "output_scores": false,
179
+ "pad_token_id": null,
180
+ "patch_size": 14,
181
+ "prefix": null,
182
+ "problem_type": null,
183
+ "pruned_heads": {},
184
+ "remove_invalid_values": false,
185
+ "repetition_penalty": 1.0,
186
+ "return_dict": true,
187
+ "return_dict_in_generate": false,
188
+ "sep_token_id": null,
189
+ "suppress_tokens": null,
190
+ "task_specific_params": null,
191
+ "temperature": 1.0,
192
+ "tf_legacy_loss": false,
193
+ "tie_encoder_decoder": false,
194
+ "tie_word_embeddings": true,
195
+ "tokenizer_class": null,
196
+ "top_k": 50,
197
+ "top_p": 1.0,
198
+ "torch_dtype": null,
199
+ "torchscript": false,
200
+ "typical_p": 1.0,
201
+ "use_bfloat16": false
202
+ },
203
+ "backbone_kwargs": {},
204
+ "bad_words_ids": null,
205
+ "begin_suppress_tokens": null,
206
+ "bos_token_id": null,
207
+ "chunk_size_feed_forward": 0,
208
+ "cross_attention_hidden_size": null,
209
+ "decoder_start_token_id": null,
210
+ "depths": null,
211
+ "diversity_penalty": 0.0,
212
+ "do_sample": false,
213
+ "drop_cls_token": false,
214
+ "early_stopping": false,
215
+ "encoder_no_repeat_ngram_size": 0,
216
+ "eos_token_id": null,
217
+ "exponential_decay_length_penalty": null,
218
+ "finetuning_task": null,
219
+ "forced_bos_token_id": null,
220
+ "forced_eos_token_id": null,
221
+ "hidden_stride": 2,
222
+ "id2label": {
223
+ "0": "LABEL_0",
224
+ "1": "LABEL_1"
225
+ },
226
+ "is_decoder": false,
227
+ "is_encoder_decoder": false,
228
+ "label2id": {
229
+ "LABEL_0": 0,
230
+ "LABEL_1": 1
231
+ },
232
+ "length_penalty": 1.0,
233
+ "max_length": 20,
234
+ "min_length": 0,
235
+ "model_type": "siglip_visual_tokenizer",
236
+ "no_repeat_ngram_size": 0,
237
+ "num_beam_groups": 1,
238
+ "num_beams": 1,
239
+ "num_return_sequences": 1,
240
+ "output_attentions": false,
241
+ "output_hidden_states": false,
242
+ "output_scores": false,
243
+ "pad_token_id": null,
244
+ "prefix": null,
245
+ "problem_type": null,
246
+ "pruned_heads": {},
247
+ "remove_invalid_values": false,
248
+ "repetition_penalty": 1.0,
249
+ "return_dict": true,
250
+ "return_dict_in_generate": false,
251
+ "sep_token_id": null,
252
+ "suppress_tokens": null,
253
+ "task_specific_params": null,
254
+ "tau": 1.0,
255
+ "temperature": 1.0,
256
+ "tf_legacy_loss": false,
257
+ "tie_encoder_decoder": false,
258
+ "tie_word_embeddings": true,
259
+ "tokenize_function": "softmax",
260
+ "tokenizer_class": null,
261
+ "top_k": 50,
262
+ "top_p": 1.0,
263
+ "torch_dtype": "float32",
264
+ "torchscript": false,
265
+ "typical_p": 1.0,
266
+ "use_bfloat16": false,
267
+ "use_indicators": false,
268
+ "vocab_size": 65536
269
+ }
270
+ }
configuration_ovis.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC, abstractmethod
2
+ from typing import List, Dict, Union, Optional
3
+
4
+ from transformers import PretrainedConfig, AutoConfig
5
+
6
+ IGNORE_ID = -100
7
+ IMAGE_TOKEN_ID = -200
8
+ IMAGE_TOKEN = "<image>"
9
+ IMAGE_ATOM_ID = -300
10
+ IMAGE_INDICATOR_IDS = [-301, -302, -303, -304, -305]
11
+
12
+
13
+ # ----------------------------------------------------------------------
14
+ # Visual Tokenizer Configuration
15
+ # ----------------------------------------------------------------------
16
+ class BaseVisualTokenizerConfig(PretrainedConfig):
17
+ def __init__(
18
+ self,
19
+ vocab_size=16384,
20
+ tokenize_function="softmax",
21
+ tau=1.0,
22
+ depths=None,
23
+ drop_cls_token=False,
24
+ backbone_config: Optional[Union[PretrainedConfig, dict]] = None,
25
+ hidden_stride: int = 1,
26
+ **kwargs
27
+ ):
28
+ super().__init__(**kwargs)
29
+ self.vocab_size = vocab_size
30
+ self.tokenize_function = tokenize_function
31
+ self.tau = tau
32
+ if isinstance(depths, str):
33
+ depths = [int(x) for x in depths.split('|')]
34
+ self.depths = depths
35
+ self.backbone_kwargs = {}
36
+ self.drop_cls_token = drop_cls_token
37
+ if backbone_config is not None:
38
+ assert isinstance(backbone_config, (PretrainedConfig, dict)), \
39
+ f"expect `backbone_config` to be instance of PretrainedConfig or dict, but got {type(backbone_config)} type"
40
+ if not isinstance(backbone_config, PretrainedConfig):
41
+ model_type = backbone_config['model_type']
42
+ backbone_config.pop('model_type')
43
+ backbone_config = AutoConfig.for_model(model_type, **backbone_config)
44
+ self.backbone_config = backbone_config
45
+ self.hidden_stride = hidden_stride
46
+
47
+
48
+ class SiglipVisualTokenizerConfig(BaseVisualTokenizerConfig):
49
+ model_type = "siglip_visual_tokenizer"
50
+
51
+ def __init__(self, **kwargs):
52
+ super().__init__(**kwargs)
53
+ if self.drop_cls_token:
54
+ self.drop_cls_token = False
55
+ if self.depths:
56
+ assert len(self.depths) == 1
57
+ self.backbone_kwargs['num_hidden_layers'] = self.depths[0]
58
+
59
+
60
+ AutoConfig.register("siglip_visual_tokenizer", SiglipVisualTokenizerConfig)
61
+
62
+
63
+ # ----------------------------------------------------------------------
64
+ # Ovis Configuration
65
+ # ----------------------------------------------------------------------
66
+ class OvisConfig(PretrainedConfig):
67
+ model_type = "ovis"
68
+
69
+ def __init__(
70
+ self,
71
+ llm_config: Optional[Union[PretrainedConfig, dict]] = None,
72
+ visual_tokenizer_config: Optional[Union[PretrainedConfig, dict]] = None,
73
+ multimodal_max_length=8192,
74
+ hidden_size=None,
75
+ conversation_formatter_class=None,
76
+ llm_attn_implementation=None,
77
+ disable_tie_weight=False,
78
+ **kwargs
79
+ ):
80
+ super().__init__(**kwargs)
81
+ if llm_config is not None:
82
+ assert isinstance(llm_config, (PretrainedConfig, dict)), \
83
+ f"expect `llm_config` to be instance of PretrainedConfig or dict, but got {type(llm_config)} type"
84
+ if not isinstance(llm_config, PretrainedConfig):
85
+ model_type = llm_config['model_type']
86
+ llm_config.pop('model_type')
87
+ llm_config = AutoConfig.for_model(model_type, **llm_config)
88
+ self.llm_config = llm_config
89
+ if visual_tokenizer_config is not None:
90
+ assert isinstance(visual_tokenizer_config, (PretrainedConfig, dict)), \
91
+ f"expect `visual_tokenizer_config` to be instance of PretrainedConfig or dict, but got {type(visual_tokenizer_config)} type"
92
+ if not isinstance(visual_tokenizer_config, PretrainedConfig):
93
+ model_type = visual_tokenizer_config['model_type']
94
+ visual_tokenizer_config.pop('model_type')
95
+ visual_tokenizer_config = AutoConfig.for_model(model_type, **visual_tokenizer_config)
96
+ self.visual_tokenizer_config = visual_tokenizer_config
97
+ self.multimodal_max_length = multimodal_max_length
98
+ self.hidden_size = hidden_size
99
+ self.conversation_formatter_class = conversation_formatter_class
100
+ self.llm_attn_implementation = llm_attn_implementation
101
+ self.disable_tie_weight = disable_tie_weight
102
+
103
+
104
+ # ----------------------------------------------------------------------
105
+ # Conversation Formatter
106
+ # ----------------------------------------------------------------------
107
+ class ConversationFormatter(ABC):
108
+ support_tokenizer_types = None
109
+
110
+ def __init__(self, tokenizer):
111
+ tokenizer_type = type(tokenizer).__name__
112
+ assert tokenizer_type in self.support_tokenizer_types, \
113
+ f'Invalid tokenizer type, expected one from `{self.support_tokenizer_types}`, but got `{tokenizer_type}`'
114
+ self.tokenizer = tokenizer
115
+ self.image_token = IMAGE_TOKEN
116
+ self.image_token_id = IMAGE_TOKEN_ID
117
+ self.ignore_id = IGNORE_ID
118
+
119
+ def _tokenize_with_image_symbol(self, text):
120
+ text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
121
+ text.split(self.image_token)]
122
+ token_ids = []
123
+ num_chuck = len(text_chunks)
124
+ for i, chunk in enumerate(text_chunks):
125
+ token_ids.extend(chunk)
126
+ if i < num_chuck - 1:
127
+ token_ids.append(self.image_token_id)
128
+ return token_ids
129
+
130
+ @abstractmethod
131
+ def format(self, conversations: List[Dict], generation_preface=None):
132
+ pass
133
+
134
+ @abstractmethod
135
+ def format_query(self, query, generation_preface=""):
136
+ pass
137
+
138
+
139
+ class Llama3ConversationFormatter(ConversationFormatter):
140
+ support_tokenizer_types = ['PreTrainedTokenizerFast']
141
+
142
+ def __init__(self, tokenizer):
143
+ super().__init__(tokenizer)
144
+ self.from2role = {
145
+ "system": "<|start_header_id|>system<|end_header_id|>\n\n",
146
+ "human": "<|start_header_id|>user<|end_header_id|>\n\n",
147
+ "gpt": "<|start_header_id|>assistant<|end_header_id|>\n\n",
148
+ }
149
+ self.gpt_token_num = None
150
+ self.im_end = "<|eot_id|>"
151
+ self.default_system_prompt = "You are a helpful and honest multimodal assistant."
152
+ self.bos_token = "<|begin_of_text|>"
153
+ self.bos_token_ids = None
154
+
155
+ def format(self, conversations: List[Dict], generation_preface=None):
156
+ if self.gpt_token_num is None:
157
+ self.gpt_token_num = len(self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)
158
+
159
+ if self.bos_token_ids is None:
160
+ self.bos_token_ids = self.tokenizer(self.bos_token, add_special_tokens=False).input_ids
161
+
162
+ if conversations[0]["from"] != "system":
163
+ conversations.insert(0, {
164
+ "from": "system",
165
+ "value": self.default_system_prompt
166
+ })
167
+
168
+ if generation_preface is not None:
169
+ conversations.append({
170
+ "from": "gpt",
171
+ "value": generation_preface
172
+ })
173
+
174
+ prompt = "" + self.bos_token
175
+ input_ids = [] + self.bos_token_ids
176
+ labels = [] + [IGNORE_ID] * len(input_ids)
177
+ num_conversation = len(conversations)
178
+ for i, conversation in enumerate(conversations):
179
+ frm = conversation["from"]
180
+ role = self.from2role[frm]
181
+ message = conversation["value"].strip()
182
+ text = role + message
183
+ if i < num_conversation - 1 or generation_preface is None:
184
+ text += self.im_end
185
+ prompt += text
186
+ token_ids = self._tokenize_with_image_symbol(text)
187
+ input_ids.extend(token_ids)
188
+ label_ids = [self.ignore_id] * len(token_ids)
189
+ if frm == "gpt":
190
+ label_ids[self.gpt_token_num:] = token_ids[self.gpt_token_num:]
191
+ labels.extend(label_ids)
192
+
193
+ assert self._tokenize_with_image_symbol(prompt) == input_ids
194
+ assert len(input_ids) == len(labels)
195
+
196
+ return prompt, input_ids, labels
197
+
198
+ def format_query(self, query, generation_preface=""):
199
+ prompt, input_ids, _ = self.format([{
200
+ "from": "human",
201
+ "value": query
202
+ }], generation_preface=generation_preface)
203
+
204
+ return prompt, input_ids
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "multimodal_max_length": 2624,
10
+ "temperature": 0.6,
11
+ "top_p": 0.9,
12
+ "transformers_version": "4.44.2"
13
+ }
gptq_model-4bit-128g.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7634723adac5657effbd03138485dd3f7a16cac82b5b9840edfe5d47d2353ad0
3
+ size 4907144020
modeling_ovis.py ADDED
@@ -0,0 +1,601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ from importlib import import_module
4
+ from typing import List, Callable, Union, Optional, Dict
5
+
6
+ import PIL.Image
7
+ import torch
8
+ from torch import Tensor
9
+ from torch.nn import init
10
+ from torch.nn.functional import softmax, gumbel_softmax, pad
11
+ from transformers import PreTrainedModel, AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor
12
+ from transformers import SiglipImageProcessor, SiglipVisionModel
13
+ from transformers.cache_utils import HybridCache
14
+ from transformers.generation.utils import GenerateOutput
15
+
16
+ from .configuration_ovis import BaseVisualTokenizerConfig, SiglipVisualTokenizerConfig
17
+ from .configuration_ovis import OvisConfig, ConversationFormatter
18
+ from .configuration_ovis import IGNORE_ID, IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS, IMAGE_TOKEN_ID
19
+
20
+
21
+ # ----------------------------------------------------------------------
22
+ # Visual Tokenizer
23
+ # ----------------------------------------------------------------------
24
+ class BaseVisualTokenizer(PreTrainedModel):
25
+ base_model_prefix = "backbone"
26
+ main_input_name = None
27
+ _image_processor_class = None
28
+ _image_processor_kwargs = {}
29
+ _backbone_class = None
30
+ _backbone_name_or_path = None
31
+
32
+ def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
33
+ super().__init__(config, *inputs, **kwargs)
34
+ self.image_processor = AutoImageProcessor.from_pretrained(kwargs['image_processor_name_or_path'])
35
+ self.backbone = AutoModel.from_config(self.config.backbone_config)
36
+ head_dim = self.config.vocab_size - len(IMAGE_INDICATOR_IDS) # reserved tokens for IMAGE_INDICATORS
37
+ self.head = torch.nn.Sequential(
38
+ torch.nn.Linear(
39
+ self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride, head_dim,
40
+ bias=False
41
+ ),
42
+ torch.nn.LayerNorm(head_dim)
43
+ )
44
+
45
+ assert all((self.image_processor.do_resize,
46
+ not getattr(self.image_processor, 'do_center_crop', False),
47
+ self.image_processor.do_rescale,
48
+ self.image_processor.do_normalize
49
+ )), f"image_processor `{self.image_processor}` is not supported currently"
50
+
51
+ def get_backbone(self):
52
+ return self.backbone
53
+
54
+ def get_image_processor(self):
55
+ return self.image_processor
56
+
57
+ def mock_input(self):
58
+ height, width = self.get_image_size()
59
+ return torch.zeros(1, 3, height, width), self.construct_image_placeholders((1, 1))
60
+
61
+ def get_head(self):
62
+ return self.head
63
+
64
+ def get_image_size(self):
65
+ raise NotImplementedError
66
+
67
+ @staticmethod
68
+ def construct_image_placeholders(grid):
69
+ image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]]
70
+ if grid[0] * grid[1] > 1:
71
+ for r in range(grid[0]):
72
+ for c in range(grid[1]):
73
+ image_placeholders.append(IMAGE_ATOM_ID)
74
+ if c < grid[1] - 1:
75
+ image_placeholders.append(IMAGE_INDICATOR_IDS[2])
76
+ if r < grid[0] - 1:
77
+ image_placeholders.append(IMAGE_INDICATOR_IDS[3])
78
+ image_placeholders.append(IMAGE_INDICATOR_IDS[4])
79
+ return image_placeholders
80
+
81
+ def preprocess_image(self, image: PIL.Image.Image, max_partition=9, covering_threshold=0.9, convert_to_rgb=True):
82
+ def _preprocess(img: PIL.Image.Image, side):
83
+ # first resize and preprocess
84
+ w, h = img.size
85
+ if w == h:
86
+ new_width = new_height = side
87
+ elif w > h:
88
+ new_width = side
89
+ new_height = int(h / w * new_width)
90
+ else:
91
+ new_height = side
92
+ new_width = int(w / h * new_height)
93
+ new_size = dict(height=new_height, width=new_width)
94
+ pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors='pt')['pixel_values']
95
+
96
+ # then pad to square
97
+ square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
98
+ new_height, new_width = pixel_values.shape[2:]
99
+ if new_height == new_width:
100
+ square_values[:, :, :, :] = pixel_values
101
+ elif new_height > new_width:
102
+ from_index = (side - new_width) // 2
103
+ square_values[:, :, :, from_index:from_index + new_width] = pixel_values
104
+ else:
105
+ from_index = (side - new_height) // 2
106
+ square_values[:, :, from_index:from_index + new_height, :] = pixel_values
107
+
108
+ return square_values
109
+
110
+ def _partition(img, grid):
111
+ w, h = img.size
112
+ row_height = h // grid[0]
113
+ col_width = w // grid[1]
114
+
115
+ partition = []
116
+ for row in range(grid[0]):
117
+ for col in range(grid[1]):
118
+ left = col * col_width
119
+ upper = row * row_height
120
+ right = w if col == grid[1] - 1 else (col + 1) * col_width
121
+ lower = h if row == grid[0] - 1 else (row + 1) * row_height
122
+ partition.append((left, upper, right, lower))
123
+
124
+ return partition
125
+
126
+ def _covering_area(left, upper, right, lower, side):
127
+ w = right - left
128
+ h = lower - upper
129
+ w, h = max(w, h), min(w, h)
130
+ if w > side:
131
+ h = h / w * side
132
+ w = side
133
+ return w * h
134
+
135
+ def _get_best_grid(img, side):
136
+ img_area = img.size[0] * img.size[1]
137
+
138
+ candidate_grids = []
139
+ for i in range(1, max_partition + 1):
140
+ for j in range(1, max_partition + 1):
141
+ if i * j <= max_partition:
142
+ candidate_grids.append((i, j))
143
+
144
+ all_grids = []
145
+ good_grids = []
146
+ for grid in candidate_grids:
147
+ partition = _partition(img, grid)
148
+ covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
149
+ assert covering_ratio <= 1.0
150
+ all_grids.append((grid, covering_ratio))
151
+ if covering_ratio > covering_threshold:
152
+ good_grids.append((grid, covering_ratio))
153
+
154
+ if len(good_grids) > 0:
155
+ # pick the good partition with minimum #sub_images and break the tie using covering_ratio
156
+ return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
157
+ else:
158
+ # pick the partition with maximum covering_ratio and break the tie using #sub_images
159
+ return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]
160
+
161
+ if convert_to_rgb and image.mode != 'RGB':
162
+ image = image.convert('RGB')
163
+
164
+ sides = self.get_image_size()
165
+ if sides[0] != sides[1]:
166
+ raise ValueError('get_image_size() returns non-square size')
167
+ side = sides[0]
168
+ grid = _get_best_grid(image, side)
169
+ partition = _partition(image, grid)
170
+ crops = [image.crop(p) for p in partition]
171
+ if len(crops) > 1:
172
+ crops.insert(0, image)
173
+ pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
174
+ image_placeholders = self.construct_image_placeholders(grid)
175
+ return pixel_values, image_placeholders
176
+
177
+ def tokenize(self, logits):
178
+ def st_argmax(y_soft, dim): # straight-through softmax
179
+ index = y_soft.max(dim, keepdim=True)[1]
180
+ y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
181
+ ret = y_hard - y_soft.detach() + y_soft
182
+ return ret
183
+
184
+ if self.config.tokenize_function == 'softmax':
185
+ tokens = softmax(logits, dim=-1)
186
+ elif self.config.tokenize_function == 'gumbel_argmax':
187
+ tokens = gumbel_softmax(logits, tau=self.config.tau, hard=True)
188
+ elif self.config.tokenize_function == 'st_argmax':
189
+ tokens = st_argmax(logits, dim=-1)
190
+ else:
191
+ raise ValueError(
192
+ f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax, but got {self.config.tokenize_function}')
193
+ return tokens
194
+
195
+ def encode(self, pixel_values):
196
+ output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
197
+ features = output.hidden_states[-1]
198
+ if self.config.drop_cls_token:
199
+ features = features[:, 1:, :]
200
+
201
+ # merge number of `hidden_stride * hidden_stride` hidden states together to reduce token sequence length
202
+ # e.g., for hidden_stride=3, this leads to a token length reduction: 729 -> 81 for siglip
203
+ if self.config.hidden_stride > 1:
204
+ n, l, d = features.shape # this `d` maybe different from the above `d
205
+ sqrt_l = int(l ** 0.5)
206
+ assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
207
+ features = features.reshape(n, sqrt_l, sqrt_l, d)
208
+ pl = (self.config.hidden_stride - (sqrt_l % self.config.hidden_stride)) % self.config.hidden_stride
209
+ features = pad(features, (0, 0, 0, pl, 0, pl), "constant", 0)
210
+ sqrt_l += pl
211
+ features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride,
212
+ sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d)
213
+ features = features.permute(0, 1, 3, 2, 4, 5) # [n, sqrt_l/hs, sqrt_l/hs, hs, hs, d]
214
+ features = features.flatten(3) # [n, sqrt_l/hs, sqrt_l/hs, hs*hs*d]
215
+ features = features.reshape(
216
+ n, -1, self.config.hidden_stride * self.config.hidden_stride * d)
217
+
218
+ return features
219
+
220
+ def forward(self, pixel_values) -> torch.Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
221
+ features = self.encode(pixel_values)
222
+ logits = self.head(features)
223
+ tokens = self.tokenize(logits)
224
+ # tokens' shape is [BatchSize, #Token, VocabSize-5], so padding with [BatchSize, #Token, 5], after
225
+ # which, tokens' shape should become [BatchSize, #Token, VocabSize]
226
+ batch_size, token_len, _ = tokens.shape
227
+ padding_tensor = torch.zeros(size=(batch_size, token_len, len(IMAGE_INDICATOR_IDS)),
228
+ dtype=tokens.dtype,
229
+ device=tokens.device,
230
+ layout=tokens.layout,
231
+ requires_grad=False)
232
+ tokens = torch.cat((tokens, padding_tensor), dim=2)
233
+ return tokens
234
+
235
+
236
+ class SiglipVisualTokenizer(BaseVisualTokenizer):
237
+ config_class = SiglipVisualTokenizerConfig
238
+ supports_gradient_checkpointing = True
239
+ _no_split_modules = ["SiglipVisionTransformer"]
240
+ _image_processor_class = SiglipImageProcessor
241
+ _image_processor_kwargs = {}
242
+ _backbone_class = SiglipVisionModel
243
+ _backbone_name_or_path = "google/siglip-so400m-patch14-384"
244
+
245
+ def get_image_size(self):
246
+ height = self.image_processor.size["height"]
247
+ width = self.image_processor.size["width"]
248
+ return height, width
249
+
250
+
251
+ AutoModel.register(SiglipVisualTokenizerConfig, SiglipVisualTokenizer)
252
+
253
+
254
+ # ----------------------------------------------------------------------
255
+ # Ovis
256
+ # ----------------------------------------------------------------------
257
+ class VisualEmbedding(torch.nn.Embedding):
258
+ def forward(self, visual_tokens: Tensor) -> Tensor:
259
+ if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
260
+ return super().forward(visual_tokens)
261
+ return torch.matmul(visual_tokens, self.weight)
262
+
263
+ def reset_parameters(self, mean=0., std=1.) -> None:
264
+ init.normal_(self.weight, mean=mean, std=std)
265
+ self._fill_padding_idx_with_zero()
266
+
267
+
268
+ class OvisPreTrainedModel(PreTrainedModel):
269
+ config_class = OvisConfig
270
+ base_model_prefix = "ovis"
271
+
272
+
273
+ class Ovis(OvisPreTrainedModel):
274
+
275
+ def __init__(self, config: OvisConfig, *inputs, **kwargs):
276
+ super().__init__(config, *inputs, **kwargs)
277
+ attn_kwargs = dict()
278
+ if self.config.llm_attn_implementation:
279
+ attn_kwargs['attn_implementation'] = self.config.llm_attn_implementation
280
+ self.llm = AutoModelForCausalLM.from_config(self.config.llm_config, **attn_kwargs)
281
+ assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
282
+ self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
283
+ self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
284
+ image_processor_name_or_path=self.config.name_or_path)
285
+ self.vte = VisualEmbedding(
286
+ self.config.visual_tokenizer_config.vocab_size,
287
+ self.config.hidden_size,
288
+ device=self.visual_tokenizer.device,
289
+ dtype=self.visual_tokenizer.dtype
290
+ )
291
+
292
+ def _merge_modules(modules_list: tuple):
293
+ merged_modules = []
294
+ for modules in modules_list:
295
+ merged_modules.extend(modules if modules else [])
296
+ return merged_modules
297
+
298
+ self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
299
+ self._skip_keys_device_placement = self.llm._skip_keys_device_placement
300
+ self._keep_in_fp32_modules = _merge_modules(
301
+ (self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
302
+ self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
303
+ self.supports_gradient_checkpointing = all(
304
+ (self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
305
+ self._supports_flash_attn_2 = all(
306
+ (self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2))
307
+ self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa))
308
+
309
+ def get_text_tokenizer(self):
310
+ return self.text_tokenizer
311
+
312
+ def get_visual_tokenizer(self):
313
+ return self.visual_tokenizer
314
+
315
+ def tie_weights(self):
316
+ if not self.config.disable_tie_weight:
317
+ self.get_llm().tie_weights()
318
+
319
+ def get_llm(self):
320
+ return self.llm
321
+
322
+ def get_vte(self):
323
+ return self.vte
324
+
325
+ def get_wte(self):
326
+ return self.llm.get_input_embeddings()
327
+
328
+ def get_conversation_formatter(self) -> ConversationFormatter:
329
+ if getattr(self, 'conversation_formatter', None) is None:
330
+ self.conversation_formatter = getattr(import_module(".configuration_ovis", __package__),
331
+ self.config.conversation_formatter_class)(self.text_tokenizer)
332
+ return self.conversation_formatter
333
+
334
+ def forward(
335
+ self,
336
+ input_ids: torch.Tensor,
337
+ attention_mask: torch.Tensor,
338
+ labels: Optional[torch.Tensor],
339
+ pixel_values: List[Optional[torch.Tensor]],
340
+ **kwargs
341
+ ):
342
+ # assert self.training, "`forward` can only be used in training. For inference, use `generate`."
343
+ _, inputs_embeds, labels, attention_mask = self.merge_multimodal(
344
+ text_input_ids=input_ids,
345
+ text_attention_masks=attention_mask,
346
+ text_labels=labels,
347
+ pixel_values=pixel_values
348
+ )
349
+ return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
350
+
351
+ def merge_multimodal(
352
+ self,
353
+ text_input_ids: torch.Tensor,
354
+ text_attention_masks: torch.Tensor,
355
+ text_labels: Optional[torch.Tensor],
356
+ pixel_values: List[Optional[torch.Tensor]],
357
+ left_padding: bool = False
358
+ ):
359
+ input_device = text_input_ids.device
360
+ visual_vocab_szie = self.get_visual_tokenizer().config.vocab_size
361
+ visual_indicator_embeds = self.get_vte()(
362
+ torch.tensor(
363
+ list(range(visual_vocab_szie - 5, visual_vocab_szie)),
364
+ dtype=torch.long,
365
+ device=self.get_visual_tokenizer().device
366
+ )
367
+ ).to(device=input_device)
368
+
369
+ if self.training:
370
+ # When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
371
+ # For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
372
+ # (see below in this function); so, the gradient will not be affected.
373
+ num_images = [x.shape[0] for x in pixel_values]
374
+ visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
375
+ visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
376
+ split_size_or_sections=num_images, dim=0)
377
+ visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
378
+ split_size_or_sections=num_images, dim=0)
379
+ visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
380
+ visual_input_ids]
381
+ else:
382
+ # When inference, sample can include only text with `None` pixel_value
383
+ num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
384
+ if sum(num_images) > 0:
385
+ visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
386
+ visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
387
+ split_size_or_sections=num_images, dim=0)
388
+ visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
389
+ split_size_or_sections=num_images, dim=0)
390
+ visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
391
+ visual_input_ids]
392
+ else:
393
+ # just placeholders
394
+ visual_embeds = [None] * len(num_images)
395
+ visual_input_ids = [None] * len(num_images)
396
+ visual_labels = [None] * len(num_images)
397
+ if text_labels is None:
398
+ text_labels = torch.full(text_input_ids.shape, IGNORE_ID, dtype=torch.long, device=input_device)
399
+
400
+ input_embeds = []
401
+ attention_masks = []
402
+ labels = []
403
+ for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
404
+ text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
405
+ ):
406
+ placeholder_token_mask = torch.lt(text_input_id, 0)
407
+ text_embed = self.get_wte()(torch.masked_fill(text_input_id, placeholder_token_mask, 0))
408
+ for i, indicator_id in enumerate(IMAGE_INDICATOR_IDS):
409
+ text_embed[text_input_id == indicator_id] = visual_indicator_embeds[i]
410
+ image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist()
411
+ if len(image_atom_positions) > 0:
412
+ input_embed_parts = []
413
+ attention_mask_parts = []
414
+ label_parts = []
415
+ prev_image_atom_position = -1
416
+ for index, image_atom_position in enumerate(image_atom_positions):
417
+ input_embed_parts.append(
418
+ text_embed[prev_image_atom_position + 1:image_atom_position, :])
419
+ label_parts.append(
420
+ text_label[prev_image_atom_position + 1:image_atom_position])
421
+ attention_mask_parts.append(
422
+ text_attention_mask[prev_image_atom_position + 1:image_atom_position])
423
+ input_embed_parts.append(visual_embed[index])
424
+ attention_mask_parts.append(
425
+ torch.ones_like(visual_label[index], dtype=torch.bool))
426
+ label_parts.append(visual_label[index])
427
+ prev_image_atom_position = image_atom_position
428
+ if prev_image_atom_position + 1 < text_input_id.shape[0]:
429
+ input_embed_parts.append(
430
+ text_embed[prev_image_atom_position + 1:, :])
431
+ attention_mask_parts.append(
432
+ text_attention_mask[prev_image_atom_position + 1:])
433
+ label_parts.append(
434
+ text_label[prev_image_atom_position + 1:])
435
+ input_embed = torch.cat(input_embed_parts, dim=0)
436
+ attention_mask = torch.cat(attention_mask_parts, dim=0)
437
+ label = torch.cat(label_parts, dim=0)
438
+ else:
439
+ input_embed = text_embed
440
+ attention_mask = text_attention_mask
441
+ label = text_label
442
+ if self.training:
443
+ # Make visual_embed & visual_indicator_embeds involved in the backward graph,
444
+ # to be compatible with deepspeed zero and ddp.
445
+ input_embed += torch.sum(visual_embed * 0.0) + torch.sum(visual_indicator_embeds * 0.0)
446
+ input_embeds.append(input_embed)
447
+ attention_masks.append(attention_mask)
448
+ labels.append(label)
449
+
450
+ if self.training: # padding to self.config.multimodal_max_length for increased training speed
451
+ padding_size = max(0, self.config.multimodal_max_length - len(input_embeds[0]))
452
+ input_embeds[0] = torch.nn.ConstantPad2d((0, 0, 0, padding_size), 0.0)(input_embeds[0])
453
+ attention_masks[0] = torch.nn.ConstantPad1d((0, padding_size), False)(attention_masks[0])
454
+ labels[0] = torch.nn.ConstantPad1d((0, padding_size), IGNORE_ID)(labels[0])
455
+ batch_input_embeds = self.pad_truncate_sequence(input_embeds, batch_first=True, padding_value=0.0, left_padding=left_padding)
456
+ batch_attention_mask = self.pad_truncate_sequence(attention_masks, batch_first=True, padding_value=False, left_padding=left_padding)
457
+ batch_labels = self.pad_truncate_sequence(labels, batch_first=True, padding_value=IGNORE_ID, left_padding=left_padding)
458
+
459
+ return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
460
+
461
+ def pad_truncate_sequence(self, sequences: List[torch.Tensor], batch_first: bool = True, padding_value: float = 0.0, left_padding: bool = False) -> torch.Tensor:
462
+ if left_padding == False:
463
+ pad_sequence = torch.nn.utils.rnn.pad_sequence(sequences, batch_first=batch_first, padding_value=padding_value)
464
+ return pad_sequence[:,:self.config.multimodal_max_length]
465
+ else:
466
+ pad_sequence = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in sequences],batch_first=True, padding_value=padding_value).flip(dims=[1])
467
+ return pad_sequence[:,-self.config.multimodal_max_length:]
468
+
469
+ def preprocess_inputs(
470
+ self,
471
+ text_or_conversations: Union[List[Dict], str],
472
+ images: Optional[List[PIL.Image.Image]],
473
+ max_partition=9,
474
+ generation_preface='',
475
+ return_labels=False,
476
+ propagate_exception=True
477
+ ):
478
+ # convert text to conversations
479
+ if isinstance(text_or_conversations, str):
480
+ conversations = [{
481
+ "from": "human",
482
+ "value": text_or_conversations
483
+ }]
484
+ elif isinstance(text_or_conversations, list):
485
+ conversations = text_or_conversations
486
+ else:
487
+ raise ValueError(f'Invalid type of `text_or_conversations`, expected `List[Dict]` or `str`,'
488
+ f' but got {type(text_or_conversations)}')
489
+
490
+ # format conversations
491
+ prompt, raw_input_ids, raw_labels = self.get_conversation_formatter().format(
492
+ conversations, generation_preface=generation_preface)
493
+
494
+ # place image placeholders
495
+ input_ids = []
496
+ labels = []
497
+ pixel_values = []
498
+ invalidate_label = False
499
+ image_token_indices = [i for i, v in enumerate(raw_input_ids) if v == IMAGE_TOKEN_ID]
500
+ last_image_token_index = -1
501
+ for i in range(len(image_token_indices)):
502
+ head = 0 if i == 0 else image_token_indices[i - 1] + 1
503
+ tail = image_token_indices[i]
504
+ last_image_token_index = tail
505
+ input_ids.extend(raw_input_ids[head:tail])
506
+ labels.extend(raw_labels[head:tail])
507
+ try:
508
+ image = images[i]
509
+ raw_pixel_values, image_placeholders = self.visual_tokenizer.preprocess_image(
510
+ image, max_partition=max_partition)
511
+ except Exception as e:
512
+ if propagate_exception:
513
+ raise e
514
+ logging.exception(e)
515
+ invalidate_label = True
516
+ raw_pixel_values, image_placeholders = self.visual_tokenizer.mock_input()
517
+ input_ids.extend(image_placeholders)
518
+ labels.extend([IGNORE_ID] * len(image_placeholders))
519
+ pixel_values.append(raw_pixel_values)
520
+ input_ids.extend(raw_input_ids[last_image_token_index + 1:])
521
+ labels.extend(raw_labels[last_image_token_index + 1:])
522
+
523
+ # return tensors
524
+ input_ids = torch.tensor(input_ids, dtype=torch.long)
525
+ labels = torch.tensor([IGNORE_ID] * len(labels) if invalidate_label else labels, dtype=torch.long)
526
+ pixel_values = torch.cat(pixel_values, dim=0) if len(pixel_values) > 0 else None
527
+
528
+ if return_labels:
529
+ return prompt, input_ids, pixel_values, labels
530
+ else:
531
+ return prompt, input_ids, pixel_values
532
+
533
+ def save_pretrained(
534
+ self,
535
+ save_directory: Union[str, os.PathLike],
536
+ is_main_process: bool = True,
537
+ state_dict: Optional[dict] = None,
538
+ save_function: Callable = torch.save,
539
+ push_to_hub: bool = False,
540
+ max_shard_size: Union[int, str] = "5GB",
541
+ safe_serialization: bool = True,
542
+ variant: Optional[str] = None,
543
+ token: Optional[Union[str, bool]] = None,
544
+ save_peft_format: bool = True,
545
+ **kwargs
546
+ ):
547
+ super().save_pretrained(save_directory,
548
+ is_main_process=is_main_process,
549
+ state_dict=state_dict,
550
+ save_function=save_function,
551
+ safe_serialization=safe_serialization)
552
+ self.get_text_tokenizer().save_pretrained(save_directory)
553
+ self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
554
+
555
+ def _get_hybrid_cache_for_llm(self, max_batch_size: int, max_cache_len: int):
556
+ cache_cls = HybridCache
557
+ llm = self.get_llm()
558
+
559
+ need_new_cache = (
560
+ not hasattr(llm, "_cache")
561
+ or (not isinstance(llm._cache, cache_cls))
562
+ or llm._cache.max_batch_size != max_batch_size
563
+ or llm._cache.max_cache_len < max_cache_len
564
+ )
565
+
566
+ if need_new_cache:
567
+ if hasattr(llm.config, "_pre_quantization_dtype"):
568
+ cache_dtype = llm.config._pre_quantization_dtype
569
+ else:
570
+ cache_dtype = llm.dtype
571
+ llm._cache = cache_cls(
572
+ config=llm.config,
573
+ max_batch_size=max_batch_size,
574
+ max_cache_len=max_cache_len,
575
+ device=llm.device,
576
+ dtype=cache_dtype,
577
+ )
578
+ else:
579
+ llm._cache.reset()
580
+ return llm._cache
581
+
582
+ # TODO: support batch generation
583
+ def generate(
584
+ self,
585
+ inputs: Optional[torch.Tensor] = None,
586
+ **kwargs
587
+ ) -> Union[GenerateOutput, torch.LongTensor]:
588
+ _, inputs_embeds, labels, attention_mask = self.merge_multimodal(
589
+ text_input_ids=inputs,
590
+ text_attention_masks=kwargs.pop('attention_mask'),
591
+ text_labels=None,
592
+ pixel_values=kwargs.pop('pixel_values'),
593
+ left_padding=True
594
+ )
595
+ if getattr(self.generation_config, 'cache_implementation') == 'hybrid': # mainly for Gemma2
596
+ kwargs['past_key_values'] = self._get_hybrid_cache_for_llm(
597
+ getattr(kwargs, "num_beams", inputs_embeds.shape[0]), kwargs['max_new_tokens'] + inputs_embeds.shape[-2])
598
+ self.get_llm()._supports_cache_class = True
599
+ kwargs['cache_implementation'] = None
600
+
601
+ return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)
preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "processor_class": "SiglipProcessor",
18
+ "resample": 3,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 384,
22
+ "width": 384
23
+ }
24
+ }
quantize_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "damp_percent": 0.1,
5
+ "desc_act": false,
6
+ "static_groups": false,
7
+ "sym": true,
8
+ "true_sequential": true,
9
+ "model_name_or_path": null,
10
+ "model_file_base_name": null,
11
+ "quant_method": "gptq",
12
+ "checkpoint_format": "gptq"
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end_of_text|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2063 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 131072,
2061
+ "pad_token": "<|end_of_text|>",
2062
+ "tokenizer_class": "PreTrainedTokenizerFast"
2063
+ }