File size: 14,042 Bytes
0c20ea9 7d563ef 0c20ea9 0e793c2 0c20ea9 de7b911 0c20ea9 1fcfb70 0c20ea9 1fcfb70 0c20ea9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
---
license: apache-2.0
datasets:
- AIDC-AI/Ovis-dataset
library_name: transformers
tags:
- MLLM
pipeline_tag: image-text-to-text
language:
- en
base_model:
- AIDC-AI/Ovis1.6-Llama3.2-3B
---
# Ovis1.6-Llama3.2-3B-GPTQ-Int4
<div align="center">
<img src=https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/3IK823BZ8w-mz_QfeYkDn.png width="30%"/>
</div>
## Introduction
[GitHub](https://github.com/AIDC-AI/Ovis) | [Paper](https://arxiv.org/abs/2405.20797)
We are excited to announce the open-sourcing of **Ovis-1.6**, our latest multi-modal large language model. Ovis is a novel Multimodal Large Language Model (MLLM) architecture, designed to structurally align visual and textual embeddings.
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/658a8a837959448ef5500ce5/TIlymOb86R6_Mez3bpmcB.png" width="100%" />
</div>
## Model
Built upon Ovis1.5, **Ovis1.6** further enhances high-resolution image processing, is trained on a larger, more diverse, and higher-quality dataset, and refines the training process with DPO training following instruction-tuning.
| Ovis MLLMs | ViT | LLM | Model Weights | Demo |
|:------------------|:-----------:|:------------------:|:---------------------------------------------------------------:|:----------------------------------------------------------------:|
| Ovis1.6-Gemma2-9B | Siglip-400M | Gemma2-9B-It | [Huggingface](https://huggingface.co/AIDC-AI/Ovis1.6-Gemma2-9B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis1.6-Gemma2-9B) |
| Ovis1.6-Llama3.2-3B | Siglip-400M | Llama-3.2-3B-Instruct | [Huggingface](https://huggingface.co/AIDC-AI/Ovis1.6-Llama3.2-3B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis1.6-Llama3.2-3B) |
| Ovis1.6-Gemma2-9B-GPTQ-Int4 | Siglip-400M | Gemma2-9B-It | [Huggingface](https://huggingface.co/AIDC-AI/Ovis1.6-Gemma2-9B-GPTQ-Int4) | - |
| Ovis1.6-Llama3.2-3B-GPTQ-Int4 | Siglip-400M | Llama-3.2-3B-Instruct | [Huggingface](https://huggingface.co/AIDC-AI/Ovis1.6-Llama3.2-3B-GPTQ-Int4) | - |
## Quantized Model
We quantized Ovis1.6 with AutoGPTQ. Follow these steps to run it.
### Installation
1. Run the following commands to get a basic environment. Be sure to run with CUDA 12.1.
```bash
conda create -n <your_env_name> python=3.10
conda activate <your_env_name>
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
pip install numpy==1.24.3 transformers==4.44.2 pillow==10.3.0 gekko pandas
```
2. Build AutoGPTQ: We customized AutoGPTQ to support Ovis model quantization. You need to build from source to install the customized version.
```bash
git clone https://github.com/AIDC-AI/AutoGPTQ.git
cd AutoGPTQ
pip install -vvv --no-build-isolation -e .
```
Check [this](https://github.com/AutoGPTQ/AutoGPTQ/issues/194) first if you are building inside a Docker container.
### Usage
Below is a code snippet to run **Ovis1.6-Llama3.2-3B-GPTQ-Int4** with multimodal inputs. For additional usage instructions, including inference wrapper and Gradio UI, please refer to [Ovis GitHub](https://github.com/AIDC-AI/Ovis?tab=readme-ov-file#inference).
```python
import torch
from PIL import Image
from transformers import GenerationConfig
from auto_gptq.modeling import OvisLlamaGPTQForCausalLM
# load model
load_device = "cuda:0" # customize load device
model = OvisLlamaGPTQForCausalLM.from_pretrained(
"AIDC-AI/Ovis1.6-Llama3.2-3B-GPTQ-Int4",
device=load_device,
trust_remote_code=True
)
model.model.generation_config = GenerationConfig.from_pretrained("AIDC-AI/Ovis1.6-Llama3.2-3B-GPTQ-Int4")
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()
# enter image path and prompt
image_path = input("Enter image path: ")
image = Image.open(image_path)
text = input("Enter prompt: ")
query = f'<image>\n{text}'
# format conversation
prompt, input_ids, pixel_values = model.preprocess_inputs(query, [image])
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
input_ids = input_ids.unsqueeze(0).to(device=model.device)
attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
# generate output
with torch.inference_mode():
gen_kwargs = dict(
max_new_tokens=1024,
do_sample=False,
top_p=None,
top_k=None,
temperature=None,
repetition_penalty=None,
eos_token_id=model.generation_config.eos_token_id,
pad_token_id=text_tokenizer.pad_token_id,
use_cache=True
)
output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0]
output = text_tokenizer.decode(output_ids, skip_special_tokens=True)
print(f'Output:\n{output}')
```
<details>
<summary>Batch inference</summary>
```python
batch_inputs = [
('example_image1.jpeg', 'Describe the content of this image.'),
('example_image2.jpeg', 'What is the equation in the image?')
]
batch_input_ids = []
batch_attention_mask = []
batch_pixel_values = []
for image_path, text in batch_inputs:
image = Image.open(image_path)
query = f'<image>\n{text}'
prompt, input_ids, pixel_values = model.preprocess_inputs(query, [image])
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
input_ids = input_ids.unsqueeze(0).to(device=model.device)
attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
batch_input_ids.append(input_ids.squeeze())
batch_attention_mask.append(attention_mask.squeeze())
batch_pixel_values.append(pixel_values)
pad_batch_input_ids = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in batch_input_ids],batch_first=True, padding_value=0.0).flip(dims=[1])
pad_batch_input_ids = pad_batch_input_ids[:,-model.config.multimodal_max_length:]
pad_batch_attention_mask = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in batch_attention_mask],batch_first=True, padding_value=False).flip(dims=[1])
pad_batch_attention_mask = pad_batch_attention_mask[:,-model.config.multimodal_max_length:]
pad_batch_pixel_values = [item for sublist in batch_pixel_values for item in sublist]
# generate output
with torch.inference_mode():
gen_kwargs = dict(
max_new_tokens=1024,
do_sample=False,
top_p=None,
top_k=None,
temperature=None,
repetition_penalty=None,
eos_token_id=model.generation_config.eos_token_id,
pad_token_id=text_tokenizer.pad_token_id,
use_cache=True
)
output_ids = model.generate(pad_batch_input_ids, pixel_values=pad_batch_pixel_values, attention_mask=pad_batch_attention_mask, **gen_kwargs)
for i in range(len(batch_input_ids)):
output = text_tokenizer.decode(output_ids[i], skip_special_tokens=True)
print(f'Output_{i}:\n{output}')
```
</details>
## Quantize Your Own Ovis Model with AutoGPTQ
We provide a demonstration code snippet for you to quantize your own fine-tuned **Ovis1.6-Llama3.2-3B** model. Before running the code, you need to **follow the ABOVE installation steps** to obtain an environment for quantization.
```python
from typing import Dict, Sequence, Union, List
import copy
import logging
from auto_gptq import BaseQuantizeConfig
from auto_gptq.modeling import OvisLlamaGPTQForCausalLM
import torch
from torch.utils.data import Dataset, DataLoader
from PIL import Image
# Specify paths and hyperparameters for quantization
model_path = "path/to/finetuned/model"
quantize_save_path = "path/to/save/quantized/model"
IGNORE_ID = -100
device_idx = 2 # you customize
torch.cuda.set_device(device_idx)
quantize_config = BaseQuantizeConfig(
bits=4, # 4 or 8
group_size=128,
damp_percent=0.1,
desc_act=False, # set to False can significantly speed up inference but the perplexity may slightly bad
static_groups=False,
sym=True,
true_sequential=True,
)
# Load model
model = OvisLlamaGPTQForCausalLM.from_pretrained(
model_path,
quantize_config,
torch_dtype=torch.bfloat16,
multimodal_max_length=2624,
llm_attn_implementation='eager',
trust_remote_code=True
).cuda()
print(f"Model Loaded!")
# prepare calibration samples
class CalibrationDataset(Dataset):
"""
Dataset class for calibration. Initialize with the loaded Ovis model, and a sample list in the following format:
data_list = [
{
"image": "path/to/image/of/this/sample",
"conversations": [
{
"from": "human",
"value": "<image>\n[Your sample prompt]"
},
{
"from": "gpt",
"value": "[Anything]"
}
]
},
...
]
"""
def __init__(self, model, text_max_length, data_list: List[Dict]):
self.data = data_list
self.model = model
self.visual_tokenizer = model.get_visual_tokenizer()
self.text_max_length = text_max_length
def __len__(self):
return len(self.data)
def __getitem__(self, i: int) -> Dict[str, torch.Tensor]:
sample = self.data[i]
conversations = copy.deepcopy(sample["conversations"])
images = [Image.open(sample['image'])]
max_partition = 9
prompt, input_ids, pixel_values, labels = self.model.preprocess_inputs(
conversations,
images,
max_partition=max_partition,
generation_preface=None,
return_labels=True,
propagate_exception=False
)
if pixel_values is None:
pixel_values, _ = self.visual_tokenizer.mock_input()
input_ids = input_ids[:self.text_max_length]
labels = labels[:self.text_max_length]
return dict(
pixel_values=pixel_values,
input_ids=input_ids,
labels=labels
)
class DataCollatorForMultimodalDatasetGPTQ:
def __init__(self, text_tokenizer):
self.text_tokenizer = text_tokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, Union[torch.Tensor, List[torch.Tensor]]]:
pixel_values, input_ids, labels = tuple([instance[key] for instance in instances]
for key in ("pixel_values", "input_ids", "labels"))
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids,
batch_first=True,
padding_value=self.text_tokenizer.pad_token_id)
attention_mask = torch.ne(input_ids, self.text_tokenizer.pad_token_id)
labels = torch.nn.utils.rnn.pad_sequence(
labels,
batch_first=True,
padding_value=IGNORE_ID)
num_valid_label = torch.not_equal(labels, IGNORE_ID).sum().item()
if num_valid_label == 0:
logging.warning(
f'[DataCollatorForMultimodalDatasetGPTQ] All labels are ignored, may causing training instability\n{input_ids=}\n{attention_mask=}\n{labels=}')
return dict(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
pixel_values=pixel_values
)
class MyDataLoader(DataLoader):
def __len__(self):
return len(self.dataset) // self.batch_size # must set drop last=True
# prepare your own calibration samples here
data_list = [
{
"image": "path/to/image/of/this/sample",
"conversations": [
{
"from": "human",
"value": "<image>\n[Your sample prompt]"
},
{
"from": "gpt",
"value": "[Anything]"
}
]
}
]
train_dataset = CalibrationDataset(model, text_max_length=832, data_list=data_list)
print(f"Dataset Loaded!")
print(f"Total length of the training set: {len(train_dataset)}")
train_loader = MyDataLoader(
train_dataset,
collate_fn=DataCollatorForMultimodalDatasetGPTQ(model.get_text_tokenizer()),
shuffle=False,
batch_size=4,
drop_last=True,
pin_memory=True,
num_workers=8
)
print(f"Dataloader Loaded!")
# start quantizing
model.quantize(train_loader, cache_examples_on_gpu=False)
print(f"Model Quantized! Now Saving...")
model.save_quantized(quantize_save_path, use_safetensors=True)
print(f"ALL Done!")
```
## Performance
Here we report the performance of Ovis1.6-Llama3.2-3B-GPTQ-Int4. The results are obtained with VLMEvalkit.
Benchmark:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/645cb4b4a03f3ebb0bde20e0/SewRrzBWy8PDip2wJ1X0Q.png)
VRAM usage:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/645cb4b4a03f3ebb0bde20e0/c6o6hJEKSv14uN0xtuTQU.png)
## Citation
If you find Ovis useful, please cite the paper
```
@article{lu2024ovis,
title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model},
author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye},
year={2024},
journal={arXiv:2405.20797}
}
```
## License
This project is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) (SPDX-License-Identifier: Apache-2.0).
## Disclaimer
We used compliance-checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter. |