lewtun HF staff commited on
Commit
560f6a8
1 Parent(s): e94e299

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -34
README.md CHANGED
@@ -1,46 +1,86 @@
1
  ---
2
  base_model: deepseek-ai/deepseek-math-7b-base
3
- license: apache-2.0
4
- pipeline_tag: text-generation
5
  tags:
6
  - alignment-handbook
7
  - generated_from_trainer
8
  widget:
9
- - example_title: Math problem
10
- messages:
11
- - role: user
12
- content: For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$
13
- have two distinct integer roots?
14
- output:
15
- text: "### Solution: \n1- For the polynomial \\\\( x^2 + kx + 36 \\\\) to have\
16
- \ two distinct integer roots, let's denote these roots by \\\\( r_1 \\\\) and\
17
- \ \\\\( r_2 \\\\).\n\n\n2- According to Vieta's formulas, the sum of the roots\
18
- \ \\\\( r_1 + r_2 \\\\) is equal to \\\\(-k\\\\), and the product of the roots\
19
- \ \\\\( r_1 \\\\cdot r_2 \\\\) is equal to 36.\n\n\n3- To find the distinct\
20
- \ integer pairs \\\\((r_1, r_2)\\\\) whose product is 36, we need to determine\
21
- \ all pairs of integers \\\\((r_1, r_2)\\\\) such that \\\\( r_1 \\\\cdot r_2\
22
- \ = 36 \\\\) and \\\\( r_1 \\\\neq r_2 \\\\).\n\n\n4- From the equation \\\\\
23
- ( r_1 + r_2 = -k \\\\), for each valid pair \\\\((r_1, r_2)\\\\), we can compute\
24
- \ the corresponding value of \\\\( k \\\\).\n\n\n5- Finally, since we need the\
25
- \ polynomial to have two distinct integer roots, we need to ensure that \\\\\
26
- ( r_1 \\\\) and \\\\( r_2 \\\\) are distinct.\nLet's start by finding all pairs\
27
- \ \\\\((r_1, r_2)\\\\) such that \\\\( r_1 \\\\cdot r_2 = 36 \\\\). We'll then\
28
- \ determine the values of \\\\( k \\\\) and ensure the roots are distinct.\n\
29
- ```python import itertools\n# Find all pairs (r1, r2) such that r1 * r2 = 36\
30
- \ product_36 = 36 factor_pairs = []\nfor i in range(1, product_36 + 1):\n if\
31
- \ product_36 % i == 0:\n pair = (i, product_36 // i)\n if pair[0] != pair[1]:\
32
- \ # Ensure distinct pairs\n factor_pairs.append(pair)\n \n # Calculate\
33
- \ k for each pair and ensure distinct integer roots\n valid_k_values = set()\n\
34
- \ for r1, r2 in factor_pairs:\n if r1 != r2:\n k = -(r1 + r2)\n\
35
- \ valid_k_values.add(k)\n \n print((len(valid_k_values), sorted(valid_k_values)))\n\
36
- \ ```\n \n ```output\n (4, [-37, -20, -15,-13])\n ```\n The distinct integer\
37
- \ values of \\\\( k \\\\) that make the\npolynomial \\\\( x^2 + kx + 36 \\\\\
38
- ) have two distinct integer roots are \\\\(-37, -20, -15, \\\\text{and} -13\\\
39
- \\).\nTherefore, the number of such values of \\\\( k \\\\) is:\n[ \\\\boxed{4}\
40
- \ \\\\]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  model-index:
42
  - name: NuminaMath-7B-TIR
43
  results: []
 
44
  ---
45
 
46
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
1
  ---
2
  base_model: deepseek-ai/deepseek-math-7b-base
 
 
3
  tags:
4
  - alignment-handbook
5
  - generated_from_trainer
6
  widget:
7
+ - example_title: Math problem
8
+ messages:
9
+ - role: user
10
+ content: >-
11
+ For how many values of the constant $k$ will the polynomial
12
+ $x^{2}+kx+36$ have two distinct integer roots?
13
+ output:
14
+ text: >-
15
+ ### Solution:
16
+
17
+ 1- For the polynomial \\( x^2 + kx + 36 \\) to have two
18
+ distinct integer roots, let's denote these roots by \\( r_1 \\) and \\(
19
+ r_2 \\).
20
+
21
+
22
+
23
+ 2- According to Vieta's formulas, the sum of the roots \\( r_1 + r_2 \\)
24
+ is equal to \\(-k\\), and the product of the roots \\( r_1 \\cdot r_2
25
+ \\) is equal to 36.
26
+
27
+
28
+
29
+ 3- To find the distinct integer pairs \\((r_1, r_2)\\) whose product is
30
+ 36, we need to determine all pairs of integers \\((r_1, r_2)\\) such
31
+ that \\( r_1 \\cdot r_2 = 36 \\) and \\( r_1 \\neq r_2 \\).
32
+
33
+
34
+
35
+ 4- From the equation \\( r_1 + r_2 = -k \\), for each valid pair
36
+ \\((r_1, r_2)\\), we can compute the corresponding value of \\( k \\).
37
+
38
+
39
+
40
+ 5- Finally, since we need the polynomial to have two distinct integer
41
+ roots, we need to ensure that \\( r_1 \\) and \\( r_2 \\) are distinct.
42
+
43
+ Let's start by finding all pairs \\((r_1, r_2)\\) such that \\( r_1
44
+ \\cdot r_2 = 36 \\). We'll then determine the values of \\( k \\) and
45
+ ensure the roots are distinct.
46
+
47
+ ```python import itertools
48
+
49
+ # Find all pairs (r1, r2) such that r1 * r2 = 36 product_36 = 36
50
+ factor_pairs = []
51
+
52
+ for i in range(1, product_36 + 1):
53
+ if product_36 % i == 0:
54
+ pair = (i, product_36 // i)
55
+ if pair[0] != pair[1]: # Ensure distinct pairs
56
+ factor_pairs.append(pair)
57
+
58
+ # Calculate k for each pair and ensure distinct integer roots
59
+ valid_k_values = set()
60
+ for r1, r2 in factor_pairs:
61
+ if r1 != r2:
62
+ k = -(r1 + r2)
63
+ valid_k_values.add(k)
64
+
65
+ print((len(valid_k_values), sorted(valid_k_values)))
66
+ ```
67
+
68
+ ```output
69
+ (4, [-37, -20, -15,-13])
70
+ ```
71
+ The distinct integer values of \\( k \\) that make the
72
+ polynomial \\( x^2 + kx + 36 \\) have two distinct integer roots are
73
+ \\(-37, -20, -15, \\text{and} -13\\).
74
+
75
+ Therefore, the number of such values of \\( k \\) is:
76
+
77
+ [ \\boxed{4} \\]
78
+
79
+ pipeline_tag: text-generation
80
  model-index:
81
  - name: NuminaMath-7B-TIR
82
  results: []
83
+ license: apache-2.0
84
  ---
85
 
86
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You