File size: 2,005 Bytes
824dd8e
89e45a9
 
 
 
 
 
824dd8e
3862f74
89e45a9
 
 
 
 
 
 
8c725b4
89e45a9
 
 
 
 
 
0d05cae
 
89e45a9
 
f940616
89e45a9
0d05cae
8f2e0ce
0d05cae
 
 
89e45a9
 
 
 
 
 
 
 
 
7ec3cfd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
license: llama2
language:
- en
datasets:
- AGBonnet/augmented-clinical-notes
base_model: epfl-llm/meditron-7b
---
<img width=20% src="medinote.png" title="logo">

# Model Card for MediNote-7B-v1.0
MediNote is a suite of open-source medical Large Language Models (LLMs) fine-tuned for clinical note generation from the [Meditron](https://arxiv.org/abs/2311.16079) foundation model. 
MediNote-7B is a 7 billion parameters model trained to generate clinical notes from doctor-patient conversations. 

## Model Details

- **Developed by:** [Antoine Bonnet](https://huggingface.co/AGBonnet) and [Paul Boulenger](https://huggingface.co/paulblger)
- **Model type:** Causal decoder-only transformer language model
- **Language(s):** English only
- **Model License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt)
- **Code License:** [MIT](https://opensource.org/license/mit/)
- **Fine-tuned from model:** [Meditron-7B.v1.0](https://huggingface.co/epfl-llm/meditron-7b)
- **Context length:**  2K tokens
- **Input:**  Patient-doctor conversation transcripts (text)
- **Output:**  Clinical notes (text)
- **Repository:** [EPFL-IC-Make-Team/ClinicalNotes](https://github.com/EPFL-IC-Make-Team/ClinicalNotes)
- **Trainer:** [epflLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM)
- **Report:** *[MediNote: Automatic Clinical Notes](https://github.com/EPFL-IC-Make-Team/medinote/blob/main/report.pdf)*

<p align="center">
  <img width=70% src="model_pipeline.pdf" alt="Model pipeline" title="Model pipeline">
</p>


## Uses

### Direct Use

It is possible to use this model to generate clinical notes, which is useful for experimentation and understanding its capabilities. 
It should not be used directly for production or work that may impact people.

### Out-of-Scope Use

This model is not yet robust enough for use in a real clinical setting. 
We do not recommend using this model for natural language generation in a production environment.