A2H0H0R1 commited on
Commit
b12007d
1 Parent(s): 0670206

Model save

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/resnet-50
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: resnet-50-plant-disease
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9285917496443812
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # resnet-50-plant-disease
32
+
33
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.3609
36
+ - Accuracy: 0.9286
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 100
57
+ - eval_batch_size: 100
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 400
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 6
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 3.4023 | 1.0 | 158 | 3.2949 | 0.4071 |
71
+ | 1.9184 | 2.0 | 316 | 1.5580 | 0.7788 |
72
+ | 0.94 | 3.0 | 474 | 0.7401 | 0.8761 |
73
+ | 0.6491 | 4.0 | 633 | 0.4772 | 0.9118 |
74
+ | 0.5516 | 5.0 | 791 | 0.3857 | 0.9242 |
75
+ | 0.5164 | 5.99 | 948 | 0.3609 | 0.9286 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.35.2
81
+ - Pytorch 2.1.0+cu121
82
+ - Datasets 2.16.0
83
+ - Tokenizers 0.15.0