A2H0H0R1 commited on
Commit
f4f63e3
1 Parent(s): e9081d9

Model save

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: google/mobilenet_v2_1.0_224
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: mobilenet_v2_1.0_224-plant-disease-new
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # mobilenet_v2_1.0_224-plant-disease-new
17
+
18
+ This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.1287
21
+ - Accuracy: 0.9600
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 100
42
+ - eval_batch_size: 100
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 400
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 6
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 0.5043 | 1.0 | 366 | 0.4476 | 0.8886 |
56
+ | 0.2492 | 2.0 | 733 | 0.2550 | 0.9281 |
57
+ | 0.2069 | 3.0 | 1100 | 0.2332 | 0.9247 |
58
+ | 0.1716 | 4.0 | 1467 | 0.3329 | 0.8960 |
59
+ | 0.1602 | 5.0 | 1833 | 0.1999 | 0.9388 |
60
+ | 0.1633 | 5.99 | 2196 | 0.1287 | 0.9600 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.35.2
66
+ - Pytorch 2.1.0+cu121
67
+ - Datasets 2.16.0
68
+ - Tokenizers 0.15.0