zwx00
commited on
Commit
·
a10adb4
1
Parent(s):
ba99fa4
flask serve
Browse files
serve.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from compel import Compel, ReturnedEmbeddingsType
|
2 |
+
import logging
|
3 |
+
from abc import ABC
|
4 |
+
|
5 |
+
import diffusers
|
6 |
+
import torch
|
7 |
+
from diffusers import StableDiffusionXLPipeline
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import threading
|
11 |
+
|
12 |
+
import base64
|
13 |
+
from io import BytesIO
|
14 |
+
from PIL import Image
|
15 |
+
import numpy as np
|
16 |
+
import uuid
|
17 |
+
from tempfile import TemporaryFile
|
18 |
+
from google.cloud import storage
|
19 |
+
import sys
|
20 |
+
from flask import Flask, request, jsonify
|
21 |
+
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
logger.info("Diffusers version %s", diffusers.__version__)
|
24 |
+
|
25 |
+
class DiffusersHandler(ABC):
|
26 |
+
"""
|
27 |
+
Diffusers handler class for text to image generation.
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self):
|
31 |
+
self.initialized = False
|
32 |
+
|
33 |
+
def initialize(self, properties):
|
34 |
+
"""In this initialize function, the Stable Diffusion model is loaded and
|
35 |
+
initialized here.
|
36 |
+
Args:
|
37 |
+
ctx (context): It is a JSON Object containing information
|
38 |
+
pertaining to the model artefacts parameters.
|
39 |
+
"""
|
40 |
+
|
41 |
+
logger.info("Loading diffusion model")
|
42 |
+
logger.info("I'm totally new and updated")
|
43 |
+
|
44 |
+
|
45 |
+
device_str = "cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() and properties.get("gpu_id") is not None else "cpu"
|
46 |
+
|
47 |
+
print("my device is " + device_str)
|
48 |
+
self.device = torch.device(device_str)
|
49 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
50 |
+
sys.argv[1],
|
51 |
+
torch_dtype=torch.float16,
|
52 |
+
use_safetensors=True,
|
53 |
+
)
|
54 |
+
|
55 |
+
logger.info("moving model to device: %s", device_str)
|
56 |
+
self.pipe.to(self.device)
|
57 |
+
|
58 |
+
logger.info(self.device)
|
59 |
+
logger.info("Diffusion model from path %s loaded successfully")
|
60 |
+
|
61 |
+
self.initialized = True
|
62 |
+
|
63 |
+
def preprocess(self, raw_requests):
|
64 |
+
"""Basic text preprocessing, of the user's prompt.
|
65 |
+
Args:
|
66 |
+
requests (str): The Input data in the form of text is passed on to the preprocess
|
67 |
+
function.
|
68 |
+
Returns:
|
69 |
+
list : The preprocess function returns a list of prompts.
|
70 |
+
"""
|
71 |
+
logger.info("Received requests: '%s'", raw_requests)
|
72 |
+
self.working = True
|
73 |
+
|
74 |
+
processed_request = {
|
75 |
+
"prompt": raw_requests[0]["prompt"],
|
76 |
+
"negative_prompt": raw_requests[0].get("negative_prompt"),
|
77 |
+
"width": raw_requests[0].get("width"),
|
78 |
+
"height": raw_requests[0].get("height"),
|
79 |
+
"num_inference_steps": raw_requests[0].get("num_inference_steps", 30),
|
80 |
+
"guidance_scale": raw_requests[0].get("guidance_scale", 7.5),
|
81 |
+
}
|
82 |
+
|
83 |
+
logger.info("Processed request: '%s'", processed_request)
|
84 |
+
return processed_request
|
85 |
+
|
86 |
+
|
87 |
+
def inference(self, request):
|
88 |
+
"""Generates the image relevant to the received text.
|
89 |
+
Args:
|
90 |
+
inputs (list): List of Text from the pre-process function is passed here
|
91 |
+
Returns:
|
92 |
+
list : It returns a list of the generate images for the input text
|
93 |
+
"""
|
94 |
+
|
95 |
+
# Handling inference for sequence_classification.
|
96 |
+
compel = Compel(tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2] , text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
|
97 |
+
|
98 |
+
self.prompt = request.pop("prompt")
|
99 |
+
conditioning, pooled = compel(self.prompt)
|
100 |
+
|
101 |
+
# Handling inference for sequence_classification.
|
102 |
+
inferences = self.pipe(
|
103 |
+
prompt_embeds=conditioning,
|
104 |
+
pooled_prompt_embeds=pooled,
|
105 |
+
**request
|
106 |
+
).images
|
107 |
+
|
108 |
+
logger.info("Generated image: '%s'", inferences)
|
109 |
+
return inferences
|
110 |
+
|
111 |
+
def postprocess(self, inference_outputs):
|
112 |
+
"""Post Process Function converts the generated image into Torchserve readable format.
|
113 |
+
Args:
|
114 |
+
inference_outputs (list): It contains the generated image of the input text.
|
115 |
+
Returns:
|
116 |
+
(list): Returns a list of the images.
|
117 |
+
"""
|
118 |
+
bucket_name = "outputs-storage-prod"
|
119 |
+
client = storage.Client()
|
120 |
+
self.working = False
|
121 |
+
bucket = client.get_bucket(bucket_name)
|
122 |
+
outputs = []
|
123 |
+
for image in inference_outputs:
|
124 |
+
image_name = str(uuid.uuid4())
|
125 |
+
|
126 |
+
blob = bucket.blob(image_name + '.png')
|
127 |
+
|
128 |
+
with TemporaryFile() as tmp:
|
129 |
+
image.save(tmp, format="png")
|
130 |
+
tmp.seek(0)
|
131 |
+
blob.upload_from_file(tmp, content_type='image/png')
|
132 |
+
|
133 |
+
# generate txt file with the image name and the prompt inside
|
134 |
+
# blob = bucket.blob(image_name + '.txt')
|
135 |
+
# blob.upload_from_string(self.prompt)
|
136 |
+
|
137 |
+
outputs.append('https://storage.googleapis.com/' + bucket_name + '/' + image_name + '.png')
|
138 |
+
return outputs
|
139 |
+
|
140 |
+
|
141 |
+
app = Flask(__name__)
|
142 |
+
|
143 |
+
# Initialize the handler on startup
|
144 |
+
gpu_count = torch.cuda.device_count()
|
145 |
+
if gpu_count == 0:
|
146 |
+
raise ValueError("No GPUs available!")
|
147 |
+
|
148 |
+
handlers = [DiffusersHandler() for i in range(gpu_count)]
|
149 |
+
for i in range(gpu_count):
|
150 |
+
handlers[i].initialize({"gpu_id": i})
|
151 |
+
|
152 |
+
handler_lock = threading.Lock()
|
153 |
+
handler_index = 0
|
154 |
+
|
155 |
+
@app.route('/generate', methods=['POST'])
|
156 |
+
def generate_image():
|
157 |
+
global handler_index
|
158 |
+
try:
|
159 |
+
# Extract raw requests from HTTP POST body
|
160 |
+
raw_requests = request.json
|
161 |
+
|
162 |
+
with handler_lock:
|
163 |
+
selected_handler = handlers[handler_index]
|
164 |
+
handler_index = (handler_index + 1) % gpu_count # Rotate to the next handler
|
165 |
+
|
166 |
+
processed_request = selected_handler.preprocess([raw_requests])
|
167 |
+
inferences = selected_handler.inference(processed_request)
|
168 |
+
outputs = selected_handler.postprocess(inferences)
|
169 |
+
|
170 |
+
return jsonify({"image_urls": outputs})
|
171 |
+
except Exception as e:
|
172 |
+
logger.error("Error during image generation: %s", str(e))
|
173 |
+
return jsonify({"error": "Failed to generate image", "details": str(e)}), 500
|
174 |
+
|
175 |
+
if __name__ == '__main__':
|
176 |
+
app.run(host='0.0.0.0', port=3000, threaded=True)
|